111
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of Lavandula dentata L. grown under different levels of heavy metals stress condition

, , &
Pages 864-878 | Received 04 May 2022, Accepted 17 Jul 2022, Published online: 26 Jul 2022

References

  • Aazza, S., Lyoussi, B., and Miguel, M.G., 2011. Antioxidant activity of some Morrocan hydrosols. Journal of Medicinal Plants Research, 5 (30), 6688–6696.
  • Ahmed, D.A., and Slima, D.F., 2018. Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environmental Science and Pollution Research International, 25 (15), 14996–15005.
  • Ahsan, H., and Hadi, S.M., 1998. Strand scission in DNA induced by curcumin in the presence of Cu (II). Cancer Letters, 124 (1), 23–30.
  • Algieri, F., et al., 2016. Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L. Journal of Ethnopharmacology, 190, 142–158.
  • Al-Jubory, S.Y.O., 2020. Banana fruit peels as capping and reducing agents to creating cadmium oxide nanoparticles and evaluation its activity against E. coli and C. albicans. Plant Archives, 20 (2), 2046–2050.
  • Allison, L.E., and Moodie, C.D., 1965. Methods of soil analisis. Part 2. Madison: American Society of Agronomy, 1389–1392.
  • Al-Musayeib, N.M., et al., 2012. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complementary and Alternative Medicine, 12 (1), 1–7.
  • Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts, polphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1), 1–15.
  • Ayres, R.U., 1992. Toxic heavy metals: materials cycle optimization. Proceedings of the National Academy of Sciences of the United States of America, 89 (3), 815–820.
  • Bashir, M., Uzair, M., and Ch, B.A., 2014. A review of phytochemical and biological studies on Conocarpus erectus (Combretaceae). Pakistan Journal of Pharmaceutical Research, 1 (1), 1–8.
  • Bouki, E., et al., 2013. Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium. Marine Environmental Research, 85, 13–20.
  • Boularbah, A., et al., 2006. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63 (5), 811–817.
  • Bower, C.A., Reiteneier, R.F., and Fireman, M., 1952. Exchangeable Cation Analysis of Saline and Alkali Soil. Soil Science, 73, 251–261.
  • Braca, A., et al., 2002. Antioxidant activity of flavonoids from Licania licaniaeflora. Journal of Ethnopharmacology, 79 (3), 379–381.
  • Celiksoy, V., et al., 2021. Synergistic in vitro antimicrobial activity of pomegranate rind extract and Zinc (II) against Micrococcus luteus under planktonic and biofilm conditions. Pharmaceutics, 13 (6), 851.
  • Clarkson, C., et al., 2004. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. Journal of Ethnopharmacology, 92 (2–3), 177–191.
  • Codex Alimentarius Commission (CAC). 1993. Joint FAO/WHO food standards program. p, 391.
  • Combest, W., 1999. Alternative therapies: Lavender. U.S. Pharmacist, 24, 24∓33.
  • Cowan, M.M., 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12 (4), 564–582.
  • Creaven, B.S., et al., 2009. Copper (II) complexes of coumarin-derived Schiff bases and their anti-Candida activity. Journal of Inorganic Biochemistry, 103 (9), 1196–1203.
  • Day, P.R., 1965. Particle fractionation and particle-size analysis. In Methods of Soil Analysis, Part1. Madison: American Society of Agronomy, 545–567.
  • Devereux, M., et al., 2004. Synthesis, antimicrobial activity and chemotherapeutic potential of inorganic derivatives of 2-(4′-thiazolyl)benzimidazole{thiabendazole}: X-ray crystal structures of [Cu(TBZH)2Cl]Cl · H2O · EtOH and TBZH2NO3 (TBZH, thiabendazole). Journal of Inorganic Biochemistry, 98 (6), 1023–1031.
  • Doğanlar, Z.B., and Atmaca, M., 2011. Influence of airbone pollution on Cd, Zn, Pb, Cu, and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey). Water, Air, & Soil Pollution, 214 (1–4), 509–523.
  • Duke, J. A., 1985. CRC handbook of medicinal herbs. Boca Raton: CRC Press.
  • Eshed, M., et al., 2012. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir, 28 (33), 12288–12295.
  • FAO/WHO. 2011. Joint AO/WHO Food Standards Program Codex Committe on Contaminants in Food, Food CF/5INF/1, 5th Session. The Hague, The Netherlands.
  • Fleming, T., 1998. PDR for Herbal medicines. Montvale, NJ: Medical Economics Company, Inc.
  • Ghanmi, Z., et al., 1989. Effects of metal ions on cyprinid fish immune response: in vitro effects of Zn2+ and Mn2+ on the mitogenic response of carp pronephros lymphocytes. Ecotoxicology and Environmental Safety, 17 (2), 183–189.
  • Ghazanfar, S. A., 1994. Handbook of Arabian medicinal plants. Boca Raton, FL: CRC Press.
  • Gilani, A.H., et al., 2000. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. Journal of Ethnopharmacology, 71 (1–2), 161–167.
  • Gjorgieva, D., et al., 2013. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Research International, 2013, 276417.
  • González-Tejero, M. R., Molero-Mesa, J., and Casares-Porcel, M., 1992. The family Labiatae in popular medicine in Eastern Andalusia: the province of Granada. In: R. M. Harley and T. Reynolds, eds. Advances in Labiatae science. London, UK: Royal Botanic Gardens, Kew, 489–505.
  • Gören, A.C., et al., 2002. The chemical constituents and biological activity of essential oil of Lavandula stoechas ssp. stoechas. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 57 (9–10), 797–800.
  • Hamdaoui, O., Saoudi, F., and Chiha, M., 2010. Utilization of an agricultural waste material, melon (Cucumis melo L.) peel peel, as a sorbent for the removal of cadmium from aqueous phase. Desalination and Water Treatment, 21 (1–3), 228–237.
  • Hassanien, R., Husein, D.Z., and Khamis, M., 2019. Novel green route to synthesize cadmium oxide@graphene nanocomposite: optical properties and antimicrobial activity. Materials Research Express, 6 (8), 085094.
  • He, L., et al., 2000. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. The Journal of Biological Chemistry, 275 (16), 12175–12184.
  • Holleman, A.F., and Wiberg, E., 1985. Lehrbuch der anorganischen chemie. Berlin: Walter De Gruyter, 868.
  • Holmes, P., 1998. The energetic of western herbs: treatment strategies integrating Western and Oriental herbal medicine. Boulder, CO: Snow Lotus Press.
  • Imelouane, B., et al., 2011. Mineral contents of some medicinal and aromatic plants growing in eastern Morocco. Journal of Materials and Environmental Science, 2 (2), 104–111.
  • Jackson, M. L., 1958. Soil chemical analysis. Englewood Cliffs, NJ: Prentice-Hall.
  • Jesline, A., et al., 2015. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Applied Nanoscience, 5 (2), 157–162.
  • Jones, L.H.P., Clement, C.R., and Hopper, M.J., 1973. Lead uptake from solution by perennial ryegrass and its transport from roots to shoots. Plant and Soil, 38 (2), 403–414.
  • Jovanova, B., Kulevanova, S., and Kadifkova Panovska, T., 2019. Determination of the total phenolic content, antioxidant activity and cytotoxicity of selected aromatic herbs. Agriculturae Conspectus Scientificus, 84 (1), 51–58.
  • Julve, Ph., 1998. Baseflor. Index botanique, écologique et chorologique de la flore de France. Lille: Institut Catholique de Lille.
  • Kenner, D., 1998. Using aromatics in clinical practice. California Journal of Oriental Medicine, 9, 30–32.
  • Khan, S., et al., 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 73 (7), 1820–1827.
  • Kosanić, M., Ranković, B., Rančić, A., and Stanojković, T., 2016. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24 (3), 477–484.
  • Labieniec, M., and Gabryelak, T., 2007. Antioxidative and oxidative changes in the digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H2O2 or Cu2+ ions. Toxicology In Vitro, 21 (1), 146–156.
  • Lamaison, J.L.C., and Carnet, A., 1990. Teneurs en principaux flavonoides des fleurs et des feuilles de Crataegus monogyna Jacq. et de Crataegus laevigata (Poiret) DC. (Rosaceae) [Levels of the main flavonoids in flowers and leaves of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC. (Rosaceae)]. Pharmaceutica Acta Helvetiae, 65, 315–320.
  • Lane, S.D., and Martin, E.S., 1977. A histochemical investigation of lead uptake in Raphanus sativus. New Phytologist, 79 (2), 281–286.
  • Le, K., Chiu, F., and Ng, K., 2007. Identification and quantification of antioxidants in Fructus lycii. Food Chemistry, 105 (1), 353–363.
  • Li, X., et al., 2018. Assembly of metal–phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings. ACS Applied Materials & Interfaces, 10 (47), 40844–40853.
  • Liu, Y., and Guo, M., 2015. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Molecules, 20 (5), 8583–8594.
  • Madrid, L., Díaz-Barrientos, E., and Madrid, F., 2002. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49 (10), 1301–1308.
  • Medini, F., et al., 2014. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science, 8 (3), 216–224.
  • Mendes, I.C., et al., 2006. N(4)-tolyl-2-benzoylpyridine thiosemicarbazones and their copper(II) complexes with significant antifungal activity: crystal structure of N(4)-para-tolyl-2-benzoylpyridine thiosemicarbazone. Journal of the Brazilian Chemical Society, 17 (8), 1571–1577.
  • Meyer, B.N., et al., 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, 45 (5), 31–34.
  • Mothana, R.A.A., et al., 2009. Evaluation of the in vitro anticancer, antimicrobial and antioxidant activities of some Yemeni plants used in folk medicine. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 64 (4), 260–268.
  • Murthy, H.C.A., et al., 2020. Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. leaf extract: antimicrobial properties. Journal of Nanomaterials, 2020, 1–12.
  • NCCLS/CLSI, 2004. National committee for clinical laboratory standards. ‘Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically’. Approved standard: document M7−A6.
  • Nik Mat Zin, N.N.I., et al., 2019. Evaluation of antimalarial and toxicological activities of methanol and water leaves extracts of Piper sarmentosum. Asian Journal of Medicine and Biomedicine, 3 (1), 19–24.
  • Nwoko, C.O., and Mgbeahuruike, L., 2011. Heavy metal contamination of ready-to-use herbal remedies in South Eastern Nigeria. Pakistan Journal of Nutrition, 10 (10), 959–964.
  • Oikawa, S., and Kawanishi, S., 1996. Site-specific DNA damage induced by NADH in the presence of copper (II): role of active oxygen species. Biochemistry, 35 (14), 4584–4590.
  • Olaru, O.T., et al., 2015. Anticancer potential of selected Fallopia Adans species. Oncology Letters, 10 (3), 1323–1332.
  • Oyaizu, M., 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44 (6), 307–315.
  • Özçelik, B., Kartal, M., and Orhan, I., 2011. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49 (4), 396–402.
  • Patel, D.K., et al., 2012. Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pacific Journal of Tropical Disease, 2 (3), 239–250.
  • Pearson, J.N., et al., 2008. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiologia Plantarum, 98 (2), 229–234.
  • Prasad, A.S., 2009. Zinc: role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition and Metabolic Care, 12 (6), 646–652.
  • Ramdan, B., et al., 2018. Composition and antibacterial activity of hydro-alcohol and aqueous extracts obtained from the Lamiaceae family. Pharmacognosy Journal, 10 (1), 81–91.
  • Rebey, I.B., et al., 2017. Phytochemical composition and antioxidant activity of Lavandula dentata extracts. Journal of New Sciences, 39, 2096–2105.
  • Robards, K., et al., 1999. Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66 (4), 401–436.
  • Rota, M.C., et al., 2008. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19 (7), 681–687.
  • Sah, S.K., Reddy, K.R., and Li, J., 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571.
  • Sak, K., 2014. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognosy Reviews, 8 (16), 122–146.
  • Sandhiyapriya, T., et al., 2021. Antibacterial and antifungal activity of Cadmium sulphide nanoparticles. Annals of the Romanian Society for Cell Biology, 25 (6), 4209–4218.
  • Selvaraj, S., et al., 2014. Flavonoid–metal ion complexes: a novel class of therapeutic agents. Medicinal Research Reviews, 34 (4), 677–702.
  • Sharma, P.N., Kumar, P., and Tewari, R.K., 2004. Early signs of oxidative stress in wheat plants subjected to zinc deficiency. Journal of Plant Nutrition, 27 (3), 451–463.
  • Sharma, R.K., Agrawal, M., and Marshall, F., 2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66 (2), 258–266.
  • Singleton, V.L., and Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (3), 144–158.
  • Srivastava, T., et al., 2020. Synthesis, characterization, antimicrobial and cytotoxicity evaluation of quaternary cadmium (II)-quercetin complexes with 1, 10-phenanthroline or 2, 2’-bipyridine ligands. Biotechnology & Biotechnological Equipment, 34 (1), 999–1012.
  • Terfi, S., and Sadi, F., 2015. Optimization of extraction of toxic metals from medicinal plants, Malva sylvestris L., and Pistacia lentiscus. Analytical Letters, 48 (7), 1190–1197.
  • Thiruvengadam, M., et al., 2020. Assessment of mineral and phenolic profiles and their association with the antioxidant, cytotoxic effect, and antimicrobial potential of Lycium Chinense miller. Plants, 9 (8), 1023.
  • Turekian, K.K., and Wedepohl, K.H., 1961. Distribution of the elements in some major units of Earth's crust. Geological Society of America Bulletin, 72 (2), 175–192.
  • Turker, A.U., and Camper, N.D., 2002. Biological activity of common mullein, a medicinal plant. Journal of Ethnopharmacology, 82 (2–3), 117–125.
  • Verma, S., and Dubey, R.S., 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164 (4), 645–655.
  • Verma, S., Nizam, S., and Verma, P. K., 2013. Biotic and abiotic stress signaling in plants. In: M. Sarwat, A. Ahmad and M. Abdin, eds. Stress Signaling in Plants: Genomics and Proteomics Perspective. New York, NY: Springer, 25.
  • Wang, T., et al., 2008. DNA damage induced by caffeic acid phenyl ester in the presence of Cu(II) ions: potential mechanism of its anticancer properties. Cancer Letters, 263 (1), 77–88.
  • Watanabe, F.S., and Olsen, S.R., 1965. Test of ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29 (6), 677–678.
  • West, D.X., et al., 1995. Copper (II) complexes of 2-benzoylpyridine 4N-substituted thiosemicarbazones. Polyhedron, 14 (15–16), 2189–2200.
  • Wichtl, M., and Anton, R., 1999. Plantes thérapeutiques: tradition, pratique officinales [Therapeutic plants: tradition, officinal practice]. Sciences et thérapeutique, ed. Tec and Doc, 692. 2nd Ed.
  • Yazdankhah, S., Rudi, K., and Bernhoft, A., 2014. Zinc and copper in animal feed–development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microbial Ecology in Health and Disease, 25 (1), 25862.
  • Zenk, M.H., 1996. Heavy metal detoxification in higher plants–a review. Gene, 179 (1), 21–30.
  • Zhu, J.-K., 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53 (1), 247–273.
  • Zulkifli, S. Z., et al., 2014. Nauplii of brine shrimp (Artemia salina) as a potential toxicity testing organism for heavy metals contamination. In: From Sources to Solution. Singapore: Springer, 233–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.