71
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Insight into the mechanism and toxicology of nitrofurantoin: a metabolomics approach

ORCID Icon, ORCID Icon & ORCID Icon
Received 04 May 2023, Accepted 06 Nov 2023, Published online: 26 Nov 2023

References

  • Adkison, K. K., Vaidya, S. S., Lee, D. Y., Koo, S. H., Li, L., Mehta, A. A., Gross, A. S., Polli, J. W., Lou, Y., & Lee, E. J. (2008). The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. British Journal of Clinical Pharmacology, 66(2), 233–239. https://doi.org/10.1111/j.1365-2125.2008.03184.x
  • Aksamija, A., Horvat, G., Habek, D., Zalac, D., & Jendris, E. (2009). Nitrofurantoin-induced acute liver damage in pregnancy. Arhiv za higijenu rada i toksikologiju, 60(3), 357–361. https://doi.org/10.2478/10004-1254-60-2009-1940
  • Alam, M. S., Komal, R., Shweta, B., Jagatheesh, K., Hussain, M. S., & Amit, M. (2019). Role of nitrofurantoin in the management of urinary tract infection-a systematic review. Journal of Evolution of Medical and Dental Sciences, 8(50), 3805–3812. https://doi.org/10.14260/jemds/2019/824
  • Amin, H., & Shawkat, A. (2020). Nitrofurantoin-induced pleural effusion. American Journal of Therapeutics, 27(3), e322–e323. https://doi.org/10.1097/MJT.0000000000000989
  • Arancibia, V., Valderrama, M., Madariaga, A., Zúñiga, MaC., & Segura, R. (2003). Extraction of nitrofurantoin and its toxic metabolite from urine by supercritical fluids. Quantitation by high performance liquid chromatography with UV detection. Talanta, 61(3), 377–383. https://doi.org/10.1016/S0039-9140(03)00276-5
  • Ashrafian, H., Sounderajah, V., Glen, R., Ebbels, T., Blaise, B. J., Kalra, D., Kultima, K., Spjuth, O., Tenori, L., Salek, R. M., Kale, N., Haug, K., Schober, D., Rocca-Serra, P., O’Donovan, C., Steinbeck, C., Cano, I., de Atauri, P., & Cascante, M. (2021). Metabolomics: The stethoscope for the twenty-first century. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre, 30(4), 301–310. https://doi.org/10.1159/000513545
  • Babulal, S. M., Koventhan, C., Chen, S. M., & Hung, W. (2022). Construction of sphere like samarium vanadate nanoparticles anchored graphene nanosheets for enhanced electrochemical detection of nitrofurantoin in biological fluids. Composites Part B: Engineering, 237, 109847 https://doi.org/10.1016/j.compositesb.2022.109847
  • Brutinel, W., & Martin, W.II, (1986). Chronic nitrofurantoin reaction associated with T-lymphocyte alveolitis. Chest, 89(1), 150–152. https://doi.org/10.1378/chest.89.1.150
  • Chen, C., Gonzalez, F. J., & Idle, J. R. (2007). LC-MS-based metabolomics in drug metabolism. Drug Metabolism Reviews, 39(2–3), 581–597. https://doi.org/10.1080/03602530701497804
  • Chen, M. X., Wang, S.-Y., Kuo, C.-H., & Tsai, I.-L. (2019). Metabolome analysis for investigating host-gut microbiota interactions. Journal of the Formosan Medical Association = Taiwan yi zhi, 118 (Suppl 1), S10–S22.
  • Chudnofsky, C. R., & Otten, E. J. (1989). Acute pulmonary toxicity to nitrofurantoin. The Journal of Emergency Medicine, 7(1), 15–19. https://doi.org/10.1016/0736-4679(89)90403-4.
  • Collino, S., Martin, F. P. J., & Rezzi, S. (2013). Clinical metabolomics paves the way towards future healthcare strategies. British Journal of Clinical Pharmacology, 75(3), 619–629. https://doi.org/10.1111/j.1365-2125.2012.04216.x
  • Conklin, J., Sobers, R., & Wagner, D. (1973). Further studies on nitrofurantoin excretion in dog hepatic bile. British Journal of Pharmacology, 48(2), 273–277. https://doi.org/10.1111/j.1476-5381.1973.tb06913.x
  • Cunha, B., Cunha, C., Lam, B., Giuga, J., Chin, J., Zafonte, V., & Gerson, S. (2017). Nitrofurantoin safety and effectiveness in treating acute uncomplicated cystitis (AUC) in hospitalized adults with renal insufficiency: Antibiotic stewardship implications. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 36(7), 1213–1216. https://doi.org/10.1007/s10096-017-2911-1
  • Dufour, D. (1998). Effects of habitual exercise on routine laboratory tests. In Conference Proceedings of Clinical chemistry organised by: amer assoc clinical chemistry 2101 l street nw, suite 202., WASHINGTON, DC (p. A136).
  • Dunbar, J. R., DeLucia, A. J., & Bryant, L. R. (1984). Glutathione status of isolated rabbit lungs: Effects of nitrofurantoin and paraquat perfusion with normoxic and hyperoxic ventilation. Biochemical Pharmacology, 33(8), 1343–1348. https://doi.org/10.1016/0006-2952(84)90190-4
  • Ellinger, J. J., Chylla, R. A., Ulrich, E. L., & Markley, J. L. (2013). Databases and software for NMR-based metabolomics. Current Metabolomics, 1(1), 28–40.
  • Fransen, F., Melchers, M. J., Lagarde, C. M., Meletiadis, J., & Mouton, J. W. (2017). Pharmacodynamics of nitrofurantoin at different pH levels against pathogens involved in urinary tract infections. The Journal of Antimicrobial Chemotherapy, 72(12), 3366–3373. https://doi.org/10.1093/jac/dkx313
  • Fukami, T., Yokoi, T., & Nakajima, M. (2022). Non-P450 drug-metabolizing enzymes: contribution to drug disposition, toxicity, and development. Annual Review of Pharmacology and Toxicology, 62(1), 405–425. https://doi.org/10.1146/annurev-pharmtox-052220-105907
  • Gallardo-Garrido, C., Cho, Y., Cortés-Rios, J., Vasquez, D., Pessoa-Mahana, C. D., Araya-Maturana, R., Pessoa-Mahana, H., & Faundez, M. (2020). Nitrofuran drugs beyond redox cycling: evidence of nitroreduction-independent cytotoxicity mechanism. Toxicology and Applied Pharmacology, 401, 115104 https://doi.org/10.1016/j.taap.2020.115104
  • Gardiner, B. J., Stewardson, A. J., Abbott, I. J., & Peleg, A. Y. (2019). Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Australian Prescriber, 42(1), 14–19. https://doi.org/10.18773/austprescr.2019.002
  • Gaude, E., Chignola, F., Spiliotopoulos, D., Spitaleri, A., Ghitti, M., Garcìa-Manteiga, J. M., Mari, S., & Musco, G. (2013). muma, An R package for metabolomics univariate and multivariate statistical analysis. Current Metabolomics, 1(2), 180–189. https://doi.org/10.2174/2213235X11301020005
  • Giske, C. (2015). Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 21(10), 899–905. https://doi.org/10.1016/j.cmi.2015.05.022
  • Goemaere, N. N., Grijm, K., van Hal, P. T. W., & den Bakker, M. A. (2008). Nitrofurantoin-induced pulmonary fibrosis: A case report. Journal of Medical Case Reports, 2(1), 169 https://doi.org/10.1186/1752-1947-2-169
  • Guengerich, F. P. (2011). Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metabolism and Pharmacokinetics, 26(1), 3–14. 1010210090-1010210090 https://doi.org/10.2133/dmpk.DMPK-10-RV-062
  • Hammam, E. (2002). Determination of nitrofurantoin drug in pharmaceutical formulation and biological fluids by square-wave cathodic adsorptive stripping voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 30(3), 651–659. https://doi.org/10.1016/S0731-7085(02)00344-8
  • Holmberg, L., Boman, G., Böttiger, L., Eriksson, B., Spross, R., & Wessling, A. (1980). Adverse reactions to nitrofurantoin: analysis of 921 reports. The American Journal of Medicine, 69(5), 733–738. https://doi.org/10.1016/0002-9343(80)90443-X
  • Huttner, A., Verhaegh, E. M., Harbarth, S., Muller, A. E., Theuretzbacher, U., & Mouton, J. W. (2015). Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. The Journal of Antimicrobial Chemotherapy, 70(9), 2456–2464. https://doi.org/10.1093/jac/dkv147
  • Ibrahim, E. A., Sallam, S. A., & Hadad, G. M. (2023). Simultaneous determination of nitrofurantoin and phenazopyridine in human urine samples by HPLC-UV. Records of Pharmaceutical and Biomedical Sciences, 7(1), 10–20. https://doi.org/10.21608/rpbs.2023.169403.1181
  • Jonen, H., Oesch, F., & Platt, K. (1980). 4-Hydroxylation of nitrofurantoin in the rat. A 3-methylcholanthrene-inducible pathway of a relatively nontoxic compound. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 8(6), 446–451.
  • Kabbara, W. K., & Kordahi, M. C. (2015). Nitrofurantoin-induced pulmonary toxicity: A case report and review of the literature. Journal of Infection and Public Health, 8(4), 309–313. https://doi.org/10.1016/j.jiph.2015.01.007
  • Kari, F. W., Weaver, R., & Neville, M. C. (1997). Active transport of nitrofurantoin across the mammary epithelium in vivo. The Journal of Pharmacology and Experimental Therapeutics, 280(2), 664–668.
  • Karpman, E., & Kurzrock, E. A. (2004). Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. The Journal of Urology, 172(2), 448–453. https://doi.org/10.1097/01.ju.0000130653.74548.d6
  • Klee, S., Nürnberger, M. C., & Ungemach, F. R. (1994). The consequences of nitrofurantoin-induced oxidative stress in isolated rat hepatocytes: Evaluation of pathobiochemical alterations. Chemico-Biological Interactions, 93(2), 91–102. https://doi.org/10.1016/0009-2797(94)90089-2
  • Kohler, I., Verhoeven, A., Derks, R. J., & Giera, M. (2016). Analytical pitfalls and challenges in clinical metabolomics. Bioanalysis, 8(14), 1509–1532. https://doi.org/10.4155/bio-2016-0090
  • Kummari, S., Sunil Kumar, V., & Vengatajalabathy Gobi, K. (2020). Facile electrochemically reduced graphene oxide‐multi‐walled carbon nanotube nanocomposite as sensitive probe for in‐vitro determination of nitrofurantoin in biological fluids. Electroanalysis, 32(11), 2452–2462. https://doi.org/10.1002/elan.202060157
  • LeBlanc, A., Shiao, T. C., Roy, R., & Sleno, L. (2010). Improved detection of reactive metabolites with a bromine‐containing glutathione analog using mass defect and isotope pattern matching. Rapid Communications in Mass Spectrometry, 24(9), 1241–1250. https://doi.org/10.1002/rcm.4507
  • Li, F., Lu, J., & Ma, X. (2011a). Profiling the reactive metabolites of xenobiotics using metabolomic technologies. Chemical Research in Toxicology, 24(5), 744–751. https://doi.org/10.1021/tx200033v
  • Li, F., Lu, J., & Ma, X. (2012). CPY3A4-mediated lopinavir bioactivation and its inhibition by ritonavir. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 40(1), 18–24. https://doi.org/10.1124/dmd.111.041400
  • Li, F., Lu, J., Wang, L., & Ma, X. (2011b). CYP3A-mediated generation of aldehyde and hydrazine in atazanavir metabolism. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(3), 394–401. https://doi.org/10.1124/dmd.110.036327
  • Li, H., Lin, D., Peng, Y., & Zheng, J. (2017). Oxidative bioactivation of nitrofurantoin in rat liver microsomes. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 47(2), 103–111. https://doi.org/10.3109/00498254.2016.1164913
  • Li, H., Zhang, Z., Yang, X., Mao, X., Wang, Y., Wang, J., Peng, Y., & Zheng, J. (2019). Electron deficiency of nitro group determines hepatic cytotoxicity of nitrofurantoin. Chemical Research in Toxicology, 32(4), 681–690. https://doi.org/10.1021/acs.chemrestox.8b00362
  • Liang, Q., Wang, C., & Li, B. (2015). Metabolomic analysis using liquid chromatography/mass spectrometry for gastric cancer. Applied Biochemistry and Biotechnology, 176(8), 2170–2184. https://doi.org/10.1007/s12010-015-1706-z
  • Linnebur, S. A., & Parnes, B. L. (2004). Pulmonary and hepatic toxicity due to nitrofurantoin and fluconazole treatment. The Annals of Pharmacotherapy, 38(4), 612–616. https://doi.org/10.1345/aph.1D306
  • Livanios, K., Karampi, E. S., Sotiriou, A., Tavernaraki, K., Styliara, P., & Kainis, E. (2016). Nitrofurantoin‐induced acute pulmonary toxicity. Respirology Case Reports, 4(1), 25–27. https://doi.org/10.1002/rcr2.131
  • Lopes, V., Ramos, J., Dias, P., & Santos, A. (2021). Nitrofurantoin-induced agranulocytosis. BMJ Case Reports, 14(11), e246788 https://doi.org/10.1136/bcr-2021-246788
  • Lopez, J. M., & Fortnagel, P. (1981). Nitrofurantoin prompts the stringent response in Bacillus subtilis. Journal of General Microbiology, 126(2), 491–496.
  • Luk, T., Edwards, B. D., Bates, D., Evernden, C., & Edwards, J. (2021). Nitrofurantoin-induced liver failure: A fatal yet forgotten complication. Canadian Family Physician Medecin de Famille Canadien, 67(5), 342–344. https://doi.org/10.46747/cfp.6705342
  • Martin, W. J. (1983). Nitrofurantoin: evidence for the oxidant injury of lung parenchymal cells. The American Review of Respiratory Disease, 127(4), 482–486. https://doi.org/10.1164/arrd.1983.127.4.482
  • Martin, W. J., Powis, G., & Kachel, D. (1985). Nitrofurantoin-stimulated oxidant production in pulmonary endothelial cells. The Journal of Laboratory and Clinical Medicine, 105(1), 23–29.
  • McOsker, C. C., & Fitzpatrick, P. M. (1994). Nitrofurantoin: Mechanism of action and implications for resistance development in common uropathogens. The Journal of Antimicrobial Chemotherapy, 33 Suppl A(suppl A), 23–30.
  • Merino, G., Jonker, J. W., Wagenaar, E., van Herwaarden, A. E., & Schinkel, A. H. (2005). The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Molecular Pharmacology, 67(5), 1758–1764. https://doi.org/10.1124/mol.104.010439
  • Minchin, R. F., Ho, P. C., & Boyd, M. R. (1986). Reductive metabolism of nitrofurantoin by rat lung and liver in vitro. Biochemical Pharmacology, 35(4), 575–580. https://doi.org/10.1016/0006-2952(86)90350-3
  • Mir, E., Malik, J. A., Lone, S. A., Mohi-Ud-Din, R., & Khalil, M. (2017). Spontaneous resolution of nitrofurantoin-induced chronic pulmonary toxicity presenting with respiratory failure. Advances in Respiratory Medicine, 85(6), 333–338. https://doi.org/10.5603/ARM.2017.0057
  • Munsimbwe, L., Seetsi, A., Namangala, B., N’Da, D. D., Inoue, N., & Suganuma, K. (2021). In vitro and in vivo trypanocidal efficacy of synthesized nitrofurantoin analogs. Molecules, 26(11), 3372 https://doi.org/10.3390/molecules26113372
  • Muth, P., Metz, R., Siems, B., Bolten, W. W., & Vergin, H. (1996). Sensitive determination of nitrofurantoin in human plasma and urine by high-performance liquid chromatography. Journal of Chromatography. A, 729(1-2), 251–258. https://doi.org/10.1016/0021-9673(95)00894-2
  • O Georgewill, U., Azibanigha Joseph, F., & Adikwu, E. (2021). In-vivo Antiplasmodial Effect of Dihydroartemisinin-Piperaquine-Nitrofurantoin on Plasmodium berghei-Infected Mice.
  • Parkinson, A., & Ogilvie, B. W. (2008). Biotransformation of xenobiotics. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 7, 161–304.
  • Patel, K., & Sebastiani, G. (2020). Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Reports: Innovation in Hepatology, 2(2), 100067 https://doi.org/10.1016/j.jhepr.2020.100067
  • Patil, R. S., Krishna, A. C., Prakash, P. R., & Patil, S. R. (2012). Simple, rapid and sensitive method for determination of nitrofurantoin in human plasma by using liquid chromatography/tandem mass spectrometry. Current Trends in Biotechnology and Pharmacy, 6(2), 196–203.
  • Peall, A. F., & Hodges, A. (2007). Concomitant pulmonary and hepatic toxicity secondary to nitrofurantoin: A case report. Journal of Medical Case Reports, 1(1), 59 https://doi.org/10.1186/1752-1947-1-59
  • Pearsall, H., Ewalt, J., Tsoi, M., Sumida, S., Backus, D., Winterbauer, R., Webb, D., & Jones, H. (1974). Nitrofurantoin lung sensitivity: report of a case with prolonged nitrofurantoin lymphocyte sensitivity and interaction of nitrofurantoin-stimulated lymphocytes with alveolar cells. The Journal of Laboratory and Clinical Medicine, 83(5), 728–737.
  • Penn, R., & Griffin, J. (1982). Adverse reactions to nitrofurantoin in the United Kingdom, Sweden, and Holland. British Medical Journal (Clinical Research ed.), 284(6327), 1440–1442. https://doi.org/10.1136/bmj.284.6327.1440
  • Pourahmad, J., Khan, S., & O’Brien, P. J. (2001). Lysosomal oxidative stress cytotoxicity induced by nitrofurantoin redox cycling in hepatocytes. Advances in Experimental Medicine and Biology, 500, 261–265. https://doi.org/10.1007/978-1-4615-0667-6_41
  • Prosser, G. A., Larrouy‐Maumus, G., & de Carvalho, L. P. S. (2014). Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Reports, 15(6), 657–669. https://doi.org/10.15252/embr.201338283
  • Sakata, K. K., Larsen, B. T., Boland, J. M., Palen, B., Muhm, J. R., Sr, Helmers, R. A., & Tazelaar, H. D. (2014). Nitrofurantoin-induced granulomatous interstitial pneumonia. International Journal of Surgical Pathology, 22(4), 352–357. https://doi.org/10.1177/1066896913492849
  • Salvaggio, A., Periti, M., Miano, L., Tavanelli, M., & Marzorati, D. (1991). Body mass index and liver enzyme activity in serum. Clinical Chemistry, 37(5), 720–723. https://doi.org/10.1093/clinchem/37.5.720
  • Senior, J. (2012). Alanine aminotransferase: a clinical and regulatory tool for detecting liver injury–past, present, and future. Clinical Pharmacology and Therapeutics, 92(3), 332–339. https://doi.org/10.1038/clpt.2012.108
  • Sheehan, R. E., Wells, A. U., Milne, D. G., & Hansell, D. M. (2000). Nitrofurantoin-induced lung disease: Two cases demonstrating resolution of apparently irreversible CT abnormalities. Journal of Computer Assisted Tomography, 24(2), 259–261. https://doi.org/10.1097/00004728-200003000-00013
  • Siest, Gr., Schiele, Fo., Galteau, M.-M., Panek, E., Steinmetz, J., Fagnani, F., & Gueguen, R. (1975). Aspartate aminotransferase and alanine aminotransferase activities in plasma: Statistical distributions, individual variations, and reference values. Clinical Chemistry, 21(8), 1077–1087. https://doi.org/10.1093/clinchem/21.8.1077
  • Silva, J., McGirr, L., & O’Brien, P. J. (1991). Prevention of nitrofurantoin-induced cytotoxicity in isolated hepatocytes by fructose. Archives of Biochemistry and Biophysics, 289(2), 313–318. https://doi.org/10.1016/0003-9861(91)90416-G
  • Silva, J. M., Khan, S., & O’Brien, P. J. (1993). Molecular mechanisms of nitrofurantoin-induced hepatocyte toxicity in aerobic versus hypoxic conditions. Archives of Biochemistry and Biophysics, 305(2), 362–369. https://doi.org/10.1006/abbi.1993.1433
  • Song, Y., Li, C., Liu, G., Liu, R., Chen, Y., Li, W., Cao, Z., Zhao, B., Lu, C., & Liu, Y. (2021). Drug-metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes. Clinical Pharmacokinetics, 60(5), 585–601. https://doi.org/10.1007/s40262-021-01001-5
  • Speirs, T. P., Tuffin, N., Mundy-Baird, F., Sakota, H., Mulholland, S., Westlake, M., Lyon, M., Medford, A. R., Sharp, C., Darby, M., Albur, M., Keeley, F., Burden, H., Kenward, C., Jonas, E., Barratt, S., & Adamali, H. I. (2021). Long-term nitrofurantoin: an analysis of complication awareness, monitoring, and pulmonary injury cases. BJGP Open, 5(6), BJGPO.2021.0083 https://doi.org/10.3399/BJGPO.2021.0083
  • Spicer, J. (2005). Making sense of multivariate data analysis: An intuitive approach. Sage.
  • Squadrito, F. J., & del Portal, D. (2021). Nitrofurantoin. StatPearls [Internet]. StatPearls Publishing.
  • Steuer, A. E., Brockbals, L., & Kraemer, T. (2019). Metabolomic strategies in biomarker research–new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Frontiers in Chemistry, 7, 319 https://doi.org/10.3389/fchem.2019.00319
  • Suntres, Z. E., & Shek, P. N. (1992). Nitrofurantoin-induced pulmonary toxicity: In vivo evidence for oxidative stress-mediated mechanisms. Biochemical Pharmacology, 43(5), 1127–1135. https://doi.org/10.1016/0006-2952(92)90621-O
  • Taxak, N., & Bharatam, P. V. (2014). Drug metabolism. Resonance, 19(3), 259–282. https://doi.org/10.1007/s12045-014-0031-0
  • Ten Doesschate, T., Hendriks, K., van Werkhoven, C. H., van der Hout, E. C., Platteel, T. N., Groenewegen, I. A., Muller, A. E., Hoepelman, A. I., Bonten, M. J., & Geerlings, S. E. (2022). Nitrofurantoin 100 mg versus 50 mg prophylaxis for urinary tract infections, a cohort study. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 28(2), 248–254. https://doi.org/10.1016/j.cmi.2021.05.048
  • ter Heine, R., Hillebrand, M., Rosing, H., van Gorp, E., Mulder, J. W., Beijnen, J. H., & Huitema, A. (2009). Identification and profiling of circulating metabolites of atazanavir, a HIV protease inhibitor. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 37(9), 1826–1840. https://doi.org/10.1124/dmd.109.028258
  • Tian, Z., Xing, L., Li, D., Ma, L., Wu, R., Tian, N., & Zhang, C. (2020). Speciation of tin in tobacco by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Analytical Letters, 53(15), 2501–2516. https://doi.org/10.1080/00032719.2020.1746325
  • Wang, L., Leggas, M., Goswami, M., Empey, P. E., & McNamara, P. J. (2008). N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) as a chemical ATP-binding cassette transporter family G member 2 (Abcg2) knockout model to study nitrofurantoin transfer into milk. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(12), 2591–2596. https://doi.org/10.1124/dmd.108.02198018799806
  • Wang, Y., Gray, J. P., Mishin, V., Heck, D. E., Laskin, D. L., & Laskin, J. D. (2008). Role of cytochrome P450 reductase in nitrofurantoin-induced redox cycling and cytotoxicity. Free Radical Biology & Medicine, 44(6), 1169–1179. https://doi.org/10.1016/j.freeradbiomed.2007.12.013
  • Watari, N., Funaki, T., Aizawa, K., & Kaneniwa, N. (1983). Nonlinear assessment of nitrofurantoin bioavailability in rabbits. Journal of Pharmacokinetics and Biopharmaceutics, 11(5), 529–545. https://doi.org/10.1007/BF01062210
  • Wijma, R. A., Huttner, A., Koch, B. C., Mouton, J. W., & Muller, A. E. (2018). Review of the pharmacokinetic properties of nitrofurantoin and nitroxoline. The Journal of Antimicrobial Chemotherapy, 73(11), 2916–2926. https://doi.org/10.1093/jac/dky255
  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews. Drug Discovery, 15(7), 473–484. https://doi.org/10.1038/nrd.2016.32
  • Wishart, D. S., Cheng, L. L., Copié, V., Edison, A. S., Eghbalnia, H. R., Hoch, J. C., Gouveia, G. J., Pathmasiri, W., Powers, R., Schock, T. B., Sumner, L. W., & Uchimiya, M. (2022). NMR and metabolomics—a roadmap for the future. Metabolites, 12(8), 678. https://doi.org/10.3390/metabo12080678
  • Zuma, N. H., Aucamp, J., & David, D. D. (2019). An update on derivatisation and repurposing of clinical nitrofuran drugs. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 140, 105092. https://doi.org/10.1016/j.ejps.2019.105092
  • Zuma, N. H., Aucamp, J., Viljoen, M., & N’Da, D. D. (2022). Synthesis, in vitro antileishmanial efficacy and hit/lead identification of nitrofurantoin‐triazole hybrids. ChemMedChem., 17(10), e202200023. https://doi.org/10.1002/cmdc.202200023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.