82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Induced oxidative stress and apoptosis by 1-bromopropane in SH-SY5Y cells correlates with inhibition of Nrf2 function

, , , , , , , & show all
Received 12 Apr 2023, Accepted 13 Nov 2023, Published online: 04 Dec 2023

References

  • An, L., Peng, L.-Y., Sun, N.-Y., Yang, Y.-L., Zhang, X.-W., Li, B., Liu, B.-L., Li, P., & Chen, J. (2019). Tanshinone IIA activates nuclear factor-erythroid 2-related factor 2 to restrain pulmonary fibrosis via regulation of redox homeostasis and glutaminolysis. Antioxidants & Redox Signaling, 30(15), 1831–1848. https://doi.org/10.1089/ars.2018.7569
  • Bansal, Y., Singh, R., Parhar, I., Kuhad, A., & Soga, T. (2019). Quinolinic acid and nuclear factor erythroid 2-related factor 2 in depression: Role in neuroprogression. Frontiers in Pharmacology, 10, 452. https://doi.org/10.3389/fphar.2019.00452
  • Blandini, F., & Armentero, M. T. (2012). Animal models of Parkinson’s disease. The FEBS Journal, 279(7), 1156–1166. https://doi.org/10.1111/j.1742-4658.2012.08491.x
  • Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., & Jackson-Lewis, V. R. (2015). Oxidative stress and Parkinson’s disease. Frontiers in Neuroanatomy, 9, 91. https://doi.org/10.3389/fnana.2015.00091
  • Cheung, E. C., & Vousden, K. H. (2022). The role of ROS in tumour development and progression. Nature Reviews. Cancer, 22(5), 280–297. https://doi.org/10.1038/s41568-021-00435-0
  • Cuadrado, A., Moreno-Murciano, P., & Pedraza-Chaverri, J. (2009). The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opinion on Therapeutic Targets, 13(3), 319–329. https://doi.org/10.1517/13543780802716501
  • Fiers, W., Beyaert, R., Declercq, W., & Vandenabeele, P. (1999). More than one way to die: Apoptosis, necrosis and reactive oxygen damage. Oncogene, 18(54), 7719–7730. https://doi.org/10.1038/sj.onc.1203249
  • Frasch, H. F., Dotson, G. S., & Barbero, A. M. (2011). In vitro human epidermal penetration of 1-bromopropane. Journal of Toxicology and Environmental Health, 74(19), 1249–1260. https://doi.org/10.1080/15287394.2011.595666
  • Heurtaux, T., Bouvier, D. S., Benani, A., Helgueta Romero, S., Frauenknecht, K. B. M., Mittelbronn, M., & Sinkkonen, L. (2022). Normal and pathological NRF2 signalling in the central nervous system. Antioxidants, 11(8), 1426. https://doi.org/10.3390/antiox11081426
  • Ichihara, G., Kitoh, J., Li, W., Ding, X., Ichihara, S., & Takeuchi, Y. (2012). Neurotoxicity of 1-bromopropane: Evidence from animal experiments and human studies. Journal of Advanced Research, 3(2), 91–98. https://doi.org/10.1016/j.jare.2011.04.005
  • Ichihara, G., Li, W., Ding, X., Peng, S., Yu, X., Shibata, E., Yamada, T., Wang, H., Itohara, S., Kanno, S., Sakai, K., Ito, H., Kanefusa, K., & Takeuchi, Y. (2004). A survey on exposure level, health status, and biomarkers in workers exposed to 1‐bromopropane. American Journal of Industrial Medicine, 45(1), 63–75. https://doi.org/10.1002/ajim.10320
  • Ichihara, G., Li, W., Shibata, E., Ding, X., Wang, H., Liang, Y., Peng, S., Itohara, S., Kamijima, M., Fan, Q., Zhang, Y., Zhong, E., Wu, X., Valentine, W. M., & Takeuchi, Y. (2004). Neurologic abnormalities in workers of a 1-bromopropane factory. Environmental Health Perspectives, 112(13), 1319–1325. https://doi.org/10.1289/ehp.6995
  • Ichihara, G., Miller, J. K., Ziolkokwska, A., Itohara, S., & Takeuchi, Y. (2002). Neurological disorders in three workers exposed to 1-bromopropane. Journal of Occupational Health, 44(1), 1–7. https://doi.org/10.1539/joh.44.1
  • Jelic, M. D., Mandic, A. D., Maricic, S. M., & Srdjenovic, B. U. (2021). Oxidative stress and its role in cancer. Journal of Cancer Research and Therapeutics, 17(1), 22–28. https://doi.org/10.4103/jcrt.JCRT_862_16
  • Kang, T.-C. (2020). Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants, 9(7), 617. https://doi.org/10.3390/antiox9070617
  • Karan, A., Bhakkiyalakshmi, E., Jayasuriya, R., Sarada, D. V. L., & Ramkumar, K. M. (2020). The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacological Research, 153, 104601. https://doi.org/10.1016/j.phrs.2019.104601
  • Kim, G. H., Kim, J. E., Rhie, S. J., & Yoon, S. (2015). The role of oxidative stress in neurodegenerative diseases. Experimental Neurobiology, 24(4), 325–340. https://doi.org/10.5607/en.2015.24.4.325
  • Kim, J., Cha, Y.-N., & Surh, Y.-J. (2010). A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutation Research, 690(1–2), 12–23. https://doi.org/10.1016/j.mrfmmm.2009.09.007
  • Lee, S. K., Kang, M. J., Jeon, T. W., Ha, H. W., Yoo, J. W., Ko, G. S., Kang, W., Jeong, H. G., Lyoo, W. S., & Jeong, T. C. (2010). Role of metabolism in 1-bromopropane-induced hepatotoxicity in mice. Journal of Toxicology and Environmental Health, 73(21–22), 1431–1440. https://doi.org/10.1080/15287394.2010.511546
  • Liu, F., Ichihara, S., Valentine, W. M., Itoh, K., Yamamoto, M., Sheik Mohideen, S., Kitoh, J., & Ichihara, G. (2010). Increased susceptibility of nrf2-null mice to 1-bromopropane–induced hepatotoxicity. Toxicological Sciences, 115(2), 596–606. https://doi.org/10.1093/toxsci/kfq075
  • Liu, T., Sun, L., Zhang, Y., Wang, Y., & Zheng, J. (2022). Imbalanced GSH/ROS and sequential cell death. Journal of Biochemical and Molecular Toxicology, 36(1), e22942. https://doi.org/10.1002/jbt.22942
  • Lopes, F. M., Schröder, R., da Frota, M. L. C., Zanotto-Filho, A., Müller, C. B., Pires, A. S., Meurer, R. T., Colpo, G. D., Gelain, D. P., Kapczinski, F., Moreira, J. C. F., Fernandes, M. d C., & Klamt, F. (2010). Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Research, 1337, 85–94. https://doi.org/10.1016/j.brainres.2010.03.102
  • Majersik, J. J., Caravati, E. M., & Steffens, J. D. (2007). Severe neurotoxicity associated with exposure to the solvent 1-bromopropane (n-propyl bromide). Clinical Toxicology, 45(3), 270–276. https://doi.org/10.1080/15563650701226218
  • Méndez-García, L. A., Martínez-Castillo, M., Villegas-Sepúlveda, N., Orozco, L., & Córdova, E. J. (2019). Curcumin induces p53-independent inactivation of Nrf2 during oxidative stress–induced apoptosis. Human & Experimental Toxicology, 38(8), 951–961. https://doi.org/10.1177/0960327119845035
  • Morgan, D. L., Nyska, A., Harbo, S. J., Grumbein, S. L., Dill, J. A., Roycroft, J. H., Kissling, G. E., & Cesta, M. F. (2011). Multisite carcinogenicity and respiratory toxicity of inhaled 1-bromopropane in rats and mice. Toxicologic Pathology, 39(6), 938–948. https://doi.org/10.1177/0192623311416374
  • Na, H.-K., & Surh, Y.-J. (2014). Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radical Biology & Medicine, 67, 353–365. https://doi.org/10.1016/j.freeradbiomed.2013.10.819
  • Narasimhan, M., Mahimainathan, L., Rathinam, M. L., Riar, A. K., & Henderson, G. I. (2011). Overexpression of Nrf2 protects cerebral cortical neurons from ethanol-induced apoptotic death. Molecular Pharmacology, 80(6), 988–999. https://doi.org/10.1124/mol.111.073262
  • Niture, S. K., & Jaiswal, A. K. (2012). Nrf2 protein up-regulates anti­apoptotic protein Bcl-2 and prevents cellular apoptosis. The Journal of Biological Chemistry, 287(13), 9873–9886. https://doi.org/10.1074/jbc.M111.312694
  • Prins, J. M., Park, S., & Lurie, D. I. (2010). Decreased expression of the voltage-dependent anion channel in differentiated PC-12 and SH-SY5Y cells following low-level Pb exposure. Toxicological Sciences , 113(1), 169–176. https://doi.org/10.1093/toxsci/kfp249
  • Ravid, R., & Ferrer, I. (2012). Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson’s disease. The FEBS Journal, 279(7), 1167–1176. https://doi.org/10.1111/j.1742-4658.2012.08518.x
  • Raymond, L. W., & Ford, M. D. (2007). Severe illness in furniture makers using a new glue: 1-bromopropane toxicity confounded by arsenic. Journal of Occupational and Environmental Medicine, 49(9), 1009–1019. https://doi.org/10.1097/JOM.0b013e318145b616
  • Rubio, V., Zhang, J., Valverde, M., Rojas, E., & Shi, Z.-Z. (2011). Essential role of Nrf2 in protection against hydroquinone-and benzoquinone-induced cytotoxicity. Toxicology In Vitro, 25(2), 521–529. https://doi.org/10.1016/j.tiv.2010.10.021
  • Samukawa, M., Ichihara, G., Oka, N., & Kusunoki, S. (2012). A case of severe neurotoxicity associated with exposure to 1-bromopropane, an alternative to ozone-depleting or global-warming solvents. Archives of Internal Medicine, 172(16), 1257–1260. https://doi.org/10.1001/archinternmed.2012.3987
  • Shang, Y., Zhou, Q., Wang, T., Jiang, Y., Zhong, Y., Qian, G., Zhu, T., Qiu, X., & An, J. (2017). Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells. Toxicology In Vitro, 44, 66–73. https://doi.org/10.1016/j.tiv.2017.06.017
  • Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G., & Pae, H.-O. (2011). Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? Journal of Signal Transduction, 2011, 792639–6. https://doi.org/10.1155/2011/792639
  • Su, L.-J., Zhang, J.-H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z.-Y. (2019). Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 2019, 5080843–13. https://doi.org/10.1155/2019/5080843
  • Subramanian, K., Mohideen, S. S., Suzumura, A., Asai, N., Murakumo, Y., Takahashi, M., Jin, S., Zhang, L., Huang, Z., Ichihara, S., Kitoh, J., & Ichihara, G. (2012). Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology, 302(1), 18–24. https://doi.org/10.1016/j.tox.2012.07.006
  • Suo, J., Zhang, C., Wang, P., Hou, L., Wang, Q., & Zhao, X. (2019). Allyl sulfide counteracts 1-bromopropane-induced neurotoxicity by inhibiting neuroinflammation and oxidative stress. Toxicological Sciences, 167(2), 397–407. https://doi.org/10.1093/toxsci/kfy240
  • Taguchi, K., Takaku, M., Egner, P. A., Morita, M., Kaneko, T., Mashimo, T., Kensler, T. W., & Yamamoto, M. (2016). Generation of a new model rat: Nrf2 knockout rats are sensitive to aflatoxin B1 toxicity. Toxicological Sciences, 152(1), 40–52. https://doi.org/10.1093/toxsci/kfw065
  • Vriend, J., & Reiter, R. J. (2015). The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Molecular and Cellular Endocrinology, 401, 213–220. https://doi.org/10.1016/j.mce.2014.12.013
  • Wang, H., Ichihara, G., Ito, H., Kato, K., Kitoh, J., Yamada, T., Yu, X., Tsuboi, S., Moriyama, Y., & Takeuchi, Y. (2003). Dose-dependent biochemical changes in rat central nervous system after 12-week exposure to 1-bromopropane. Neurotoxicology, 24(2), 199–206. https://doi.org/10.1016/S0161-813X(02)00195-X
  • Wang, T.-H., Wu, M.-L., Wu, Y.-H., Tsai, W.-J., Lin, K.-P., Wang, C.-L., Yang, C.-C., & Deng, J.-F. (2015). Neurotoxicity associated with exposure to 1-bromopropane in golf-club cleansing workers. Clinical Toxicology, 53(8), 823–826. https://doi.org/10.3109/15563650.2015.1064939
  • Wei, Z., Li, X., Li, X., Liu, Q., & Cheng, Y. (2018). Oxidative stress in Parkinson’s disease: A systematic review and meta-analysis. Frontiers in Molecular Neuroscience, 11, 236. https://doi.org/10.3389/fnmol.2018.00236
  • Yang, G., Xiang, Y., Zhou, W., Zhong, X., Zhang, Y., Lin, D., & Huang, X. (2021). 1-Bromopropane-induced apoptosis in OVCAR-3 cells via oxidative stress and inactivation of Nrf2. Toxicology and Industrial Health, 37(2), 59–67. https://doi.org/10.1177/0748233720979427
  • Zhong, Z., Zeng, T., Xie, K., Zhang, C., Chen, J., Bi, Y., & Zhao, X. (2013). Elevation of 4-hydroxynonenal and malondialdehyde modified protein levels in cerebral cortex with cognitive dysfunction in rats exposed to 1-bromopropane. Toxicology, 306, 16–23. https://doi.org/10.1016/j.tox.2013.01.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.