9
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Fluoroquinolone antibiotics in the aquatic environment: environmental distribution, the research status and eco-toxicity

, , , , &
Received 03 Apr 2024, Accepted 28 May 2024, Published online: 27 Jun 2024

References

  • Adachi, F., Yamamoto, A., Takakura, K. I., & Kawahara, R. (2013). Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Science of the Total Environment, 444, 508–514. https://doi.org/10.1016/j.scitotenv.2012.11.077
  • Andrieu, M., Rico, A., Phu, T. M., Huong, D. T. T., Phuong, N. T., & Van den Brink, P. J. (2015). Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfifish farms in the Mekong Delta, Vietnam. Chemosphere, 119, 407–414. https://doi.org/10.1016/j.chemosphere.2014.06.062
  • Bawa-Allah, K. A., & Ehimiyein, A. O. (2022). Ecotoxicological effects of human and veterinary antibiotics on water flea (Daphnia magna). Environmental Toxicolgoy and Pharmacology, 94, 103932.
  • Ben, Y. J., Fu, C. X., & Hu, M. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Researc, 169, 483–493.
  • Behrens, W., Kolte, B., Junker, V., Frentrup, M., Dolsdorf, C., Börger, M., Jaleta, M., Kabelitz, T., Amon, T., Werner, D., & Nübel, U. (2023). Bacterial genome sequencing tracks the housefly-associated dispersal of fluoroquinolone- and cephalosporin-resistant Escherichia coli from a pig farm. Environmental Microbiology, 25(6), 1174–1185. https://doi.org/10.1111/1462-2920.16352
  • Bhatt, S., & Chatterjee, S. (2022). Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation-a comprehensive review. Environmental Pollution, 315, 120440. https://doi.org/10.1016/j.envpol.2022.120440
  • Bombaywala, S., Mandpe, A., Paliya, S., & Kumar, S. (2021). Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. Environmental Science and Pollution Research, 28(20), 24889–24916. https://doi.org/10.1007/s11356-021-13143-x
  • Brain, R. A., Hanson, M. L., Solomon, K. R., & Brooks, B. W. (2008). Aquatic plants exposed to pharmaceuticals: Effects and risks. Reviews of Environmental Contamination and Toxicology, 192, 67–115. https://doi.org/10.1007/978-0-387-71724-1_3
  • Burch, K. D., Han, B., Pichtel, J., & Zubkov, T. (2019). Removal efficiency of commonly prescribed antibiotics via tertiary wastewater treatment. Environmental Science and Pollution Research, 26(7), 6301–6310. https://doi.org/10.1007/s11356-019-04170-w
  • Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalization of antimicrobial resistance. Lancet Infectious Diseases, 16, 127–133.
  • Cao, D., Wang, Y., Qiao, M., & Zhao, X. (2018). Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4electrode with low bias. Journal of Catalysis., 360, 240–249.
  • Carneiro, J. F., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2020). Comparing the electrochemical degradation of the fluoroquinolone antibiotics norfloxacin and ciprofloxacin using distinct electrolytes and a BDD anode: Evolution of main oxidation byproducts and toxicity. Journal of Environmental Chemical Engineering, 8(6), 104433 https://doi.org/10.1016/j.jece.2020.104433
  • Chee-Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I. G., Lin, Y. F., Yannarell, A. C., Maxwell, S., & Aminov, R. I. (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38(3), 1086–1108. https://doi.org/10.2134/jeq2008.0128
  • Cheng, G. Y., Hao, H. H., Dai, M. H., Liu, Z. L., & Yuan, Z. H. (2013). Antibacterial action of quinolones: From target to network. European Journal of Medicinal Chemistry, 66, 555–562. https://doi.org/10.1016/j.ejmech.2013.01.057
  • Chen, Y., Li, F., Dong, X., Guo, D., Huang, Y., & Li, S. (2021). Construction of rGO@Ti/SnO2–Sb composite electrode for electrochemical degradation of fluoroquinolone antibiotic. Journal of Alloys and Compounds., 869, 159258https://doi.org/10.1016/j.jallcom.2021.159258
  • Chen, X. R., Xian, Z. Y., Gao, S., Bai, L. H., Liang, S. J., Tian, H. T., Wang, C., & Gu, C. (2023). Mechanistic insights into surface catalytic oxidation of fluoroquinolone antibiotics on sediment mackinawite. Water Research, 232, 119651https://doi.org/10.1016/j.watres.2023.119651
  • Chételat, A. A., Albertini, S., & Gocke, E. (1996). The photomutagenicity of fluoroquinolones in tests for gene mutation, chromosomal aberration, gene conversion and DNA breakage (Comet assay). Mutagenesis, 11(5), 497–504. https://doi.org/10.1093/mutage/11.5.497
  • Conkle, J. L., Lattao, C., White, J. R., & Cook, R. L. (2010). Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere, 80(11), 1353–1359. https://doi.org/10.1016/j.chemosphere.2010.06.012
  • da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere, 210, 615–623. https://doi.org/10.1016/j.chemosphere.2018.07.057
  • Dalla Bona, M., Lizzi, F., Borgato, A., & De Liguoro, M. (2016). Increasing toxicity of enrofloxacin over four generations of Daphnia magna. Ecotoxicology and Environmental Safety, 132, 397–402. https://doi.org/10.1016/j.ecoenv.2016.06.032
  • Deng, R., Yang, K., & Lin, D. H. (2021). Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. Environmental Pollution, 270, 116071 https://doi.org/10.1016/j.envpol.2020.116071
  • Du, H., Pu, W., Wang, Y., Yan, K., Feng, J., Zhang, J., Yang, C., & Gong, J. (2019). Synthesis of BiVO4/WO3 composite film for highly efficient visible light induced photoelectrocatalytic oxidation of norfloxacin. Journal of Alloys and Compounds., 787, 284–294. https://doi.org/10.1016/j.jallcom.2019.01.390
  • Du, J., Liu, Q. H., Pan, Y., Xu, S. D., Li, H. X., & Tang, J. H. (2023). The research status, potential hazards and toxicological mechanisms of fluoroquinolone antibiotics in the environment. Antibiotics, 12(6), 1058 https://doi.org/10.3390/antibiotics12061058
  • dos Santos, A. J., Kronka, M. S., Fortunato, G. V., & Lanza, M. R. V. (2021). Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review. Current Opinion in Electrochemistry, 26, 100674https://doi.org/10.1016/j.coelec.2020.100674
  • Ebert, I., Bachmann, J., Kühnen, U., Küster, A., Kussatz, C., Maletzki, D., & Schlüter, C. (2011). Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environmental Toxicology and Chemistry, 30(12), 2786–2792. https://doi.org/10.1002/etc.678
  • Espíndola, J. C., Cristovao, R. O., Santos, S. G., Boaventura, R. A., Dias, M. M., Lopes, J. C. B., & Vilar, V. J. (2019). Intensification of heterogeneous TiO2 tocatalysis using the NETmix mili-photoreactor under microscale illumination for oxytetracycline oxidation. Science of the Total Environment., 681, 467–474.
  • European Commission. (2015). Guidelines for the prudent use of antimicrobials in veterinary medicine (2015/C 299/04), commission notice. Official Journal of European Union, 299 (11), 7e26.
  • Fan, R. Q., Zhang, WJm., Jia, L., Luo, S. L., Liu, Y., Jin, Y. P., Li, Y. C., Yuan, X. Y., & Chen, Y. Q. (2022). Antagonistic effects of enrofloxacin on carbendazim-induced developmental toxicity in zebrafish embryos. Toxics, 9, 12.
  • Gao, L., Shi, Y., Li, W., Niu, H., Liu, J., & Cai, Y. (2012a). Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 86(6), 665–671. https://doi.org/10.1016/j.chemosphere.2011.11.019
  • Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., & Xu, L. (2012b). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 46(7), 2355–2364. https://doi.org/10.1016/j.watres.2012.02.004
  • Geiger, E., Hornek-Gausterer, R., & Saçan, M. T. (2016). Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicology and Environmental Safety, 129, 189–198. https://doi.org/10.1016/j.ecoenv.2016.03.032
  • Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicina, 47(3), 19 https://doi.org/10.3390/medicina47030019
  • Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9(6), 1269–1279. https://doi.org/10.1038/ismej.2014.226
  • Giraldo-Aguirre, A. L., Serna-Galvis, E. A., Erazo-Erazo, E. D., Silva-Agredo, J., Giraldo-Ospina, H., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2018). Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environmental Science and Pollution Research, 25(21), 20293–20303. https://doi.org/10.1007/s11356-017-8420-z
  • Giri, A. S., & Golder, A. K. (2019). Ciprofloxacin degradation in photo-Fenton and photocatalytic processes: degradation mechanisms and iron chelation. Journal of Environmental Sciences., 80, 82–92.
  • Gomes, M. P., Tavares, D. S., Richardi, V. S., Marques, R. Z., Wistuba, N., Moreira de Brito, J. C., Soffiatti, P., Sant’Anna-Santos, B. F., Navarro da Silva, M. A., & Juneau, P. (2019). Enrofloxacin and Roundup (R) interactive effects on the aquatic macrophyte Elodea canadensis physiology. Environmental Pollution, 249, 453–462. https://doi.org/10.1016/j.envpol.2019.03.026
  • Grenni, P., Ancona, V., & Barra Caracciolo, A. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25–39. https://doi.org/10.1016/j.microc.2017.02.006
  • Guinea, E., Brillas, E., Centellas, F., Cañizares, P., Rodrigo, M. A., & Sáez, C. (2009). Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison. Water Research, 43(8), 2131–2138.
  • Guo, R. X., Lv, J. P., Xu, H. B., Bai, Y. H., Lu, B. N., & Han, Y. (2021). A systems toxicology approach to explore toxicological mechanisms of fluoroquinolones-induced testis injury. Ecotoxicology and Environmental Safety, 228, 113002. https://doi.org/10.1016/j.ecoenv.2021.113002
  • He, J., Qiu, Y. J., Li, X. Y., Li, B. E., & Yang, P. H. (2021). A survey of six fluoroquinolones in live aquatic product from the regions surrounding the Dongting Lake in Hunan, China. International Food Reserach Journal, 28, 276–282.
  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1-2), 5–17.
  • Huang, S., Wang, Y., Qiu, S., Wan, J., Ma, Y., Yan, Z., & Xie, Q. (2022a). In-situ fabrication from MOFs derived MnxCo3-x@C modified graphite felt cathode for efficient electro-Fenton degradation of ciprofloxacin. Applied Surface Science., 586, 152804 https://doi.org/10.1016/j.apsusc.2022.152804
  • Huang, Z. H., Liu, J. M., Ji, Z. Y., Yuan, P., Guo, X. F., Li, S. M., Li, H., & Yuan, J. S. (2022b). Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4. Separation and Purification Technology., 281, 119902. https://doi.org/10.1016/j.seppur.2021.119902
  • Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L., & Parrella, A. (2005). Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Science of the Total Environment, 346(1–3), 87–98. https://doi.org/10.1016/j.scitotenv.2004.11.017
  • Janecko, N., Pokludova, L., Blahova, J., Svobodova, Z., & Literak, I. (2016). Implications of fluoroquinolone contamination for the aquatic environment-a review. Environmental Toxicology and Chemistry, 35(11), 2647–2656. https://doi.org/10.1002/etc.3552
  • Janusch, F., Scherz, G., Mohring, S. A., & Hamscher, G. (2014). Determination of fluoroquinolones in chicken feces–a new liquid–liquid extraction method combined with LC–MS/MS. Environmental Toxicology and Pharmacology, 38(3), 792–799. https://doi.org/10.1016/j.etap.2014.09.011
  • Jia, D. T., Zhang, R. J., Shao, J., Zhang, W., Cai, L. L., & Sun, W. L. (2022). Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos. Environmental Science and Ecothchnology, 10, 100162.
  • Jiang, T., Cheng, L., Han, Y., Feng, J., & Zhang, J. (2020). One-pot hydrothermal synthesis of Bi2O3-WO3 p-n heterojunction film for photoelectrocatalytic degradation of norfloxacin. Separation and Purification Technology., 238, 116428https://doi.org/10.1016/j.seppur.2019.116428
  • Jiang, Y. H., Li, M. X., Guo, C. S., An, D., Xu, J., Zhang, Y., & Xi, B. D. (2014). Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in north China. Chemosphere, 112, 267–274. https://doi.org/10.1016/j.chemosphere.2014.04.075
  • Jjemba, P. K. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and Environmental Safety, 63(1), 113–130. https://doi.org/10.1016/j.ecoenv.2004.11.011
  • Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communication, 10, 1–8.
  • Kookana, R. S., Williams, M., Boxall, A. B. A., Larsson, D. G. J., Gaw, S., Choi, K., Yamamoto, H., Thatikonda, S., Zhu, Y. G., & Carriquiriborde, P. (2014). Potential ecological footprints of active pharmaceutical ingredients: An examination of risk factors in low-, middle- and high-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130586 https://doi.org/10.1098/rstb.2013.0586
  • Kovalakova, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., & Sharma, V. K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351.
  • Kümmerer, K. (2009a). Antibiotics in the aquatic environment-a review part I. Chemosphere, 75(4), 417–434.
  • Kümmerer, K. (2009b). The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366. https://doi.org/10.1016/j.jenvman.2009.01.023
  • Kümmerer, K. (2009c). The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366. https://doi.org/10.1016/j.jenvman.2009.01.023
  • Kum, O. K., Chan, K. M., Morningstar-Kywi, N., MacKay, J. A., & Haworth, I. S. (2024). Pharmacokinetic model of human exposure to ciprofloxacin through consumption of fish. Environmental Toxicology and Pharmacology, 106, 104359https://doi.org/10.1016/j.etap.2023.104359
  • Le, T. X., & Munekage, Y. (2004). Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Vietnam. Marine Pollution Bulletin, 49(11–12), 922–929. https://doi.org/10.1016/j.marpolbul.2004.06.016
  • Lester, Y., Avisar, D., Gozlan, I., & Mamane, H. (2011). Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation ­process. Water Science and Technology, 64(11), 2230–2238. https://doi.org/10.2166/wst.2011.079
  • Leung, H. W., Minh, T. B., Murphy, M. B., Lam, J. C. W., So, M. K., Martin, M., Lam, P. K. S., & Richardson, B. J. (2012). Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environment International, 42, 1–9. https://doi.org/10.1016/j.envint.2011.03.004
  • Liu, B., Cui, Y. T., Brown, P. B., Ge, X. P., Xie, J., & Xu, P. (2015). Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus). Fish & Shellfish Immunology, 47(2), 639–644.
  • Liu, H., Gao, Y., Wang, J., Ma, D., Wang, Y., Gao, B., Yue, Q., & Xu, X. (2021). The application of UV/O3 process on ciprofloxacin wastewater containing high salinity: performance and its degradation mechanism. Chemosphere, 276, 130220. https://doi.org/10.1016/j.chemosphere.2021.130220
  • Liu, J., Lu, G., Wu, D., & Yan, Z. (2014). A multi-biomarker assessment of single and combined effects of norfloxacin and sulfamethoxazole on male goldfifish (Carassius auratus). Ecotoxicology and Environmental Safety, 102, 12–17. https://doi.org/10.1016/j.ecoenv.2014.01.014
  • Liu, J. M., Ji, Z. Y., Shi, Y. B., Yuan, P., Guo, X. F., Zhao, L. M., Li, S. M., Li, H., & Yuan, J. S. (2020). Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode. Environmental Pollution, 266(Pt 3), 115348. https://doi.org/10.1016/j.envpol.2020.115348
  • Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal and the Biochemical Engineering Journal, 240, 211–220.
  • Liu, S., Bekele, T. G., Zhao, H., Cai, X., & Chen, J. (2018). Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China. Science of the Total Environment, 631–632, 1398–1405. https://doi.org/10.1016/j.scitotenv.2018.03.139
  • Li, Z. L., Wang, J. S., Chang, J. J., Fu, B. M., & Wang, H. T. (2023). Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. Science of the Total Environment, 857, 159172. https://doi.org/10.1016/j.scitotenv.2022.159172.
  • Luan, Y. H., Chen, K. X., Zhao, J. J., & Cheng, L. L. (2022). Comparative study on synergistic toxicity of enrofloxacin combined with three antibiotics on proliferation of THLE-2 Cell. Antibiotics, 11, 3.
  • Maghsodian, Z., Sanati, A. M., Mashifana, T., Sillanpää, M., Feng, S., Nhat, T., & Ramavandi, B. (2022). Occurrence and distribution of antibiotics in the water, sediment, and biota of freshwater and marine environments: A review. Antibiotics, 11(11), 1461. https://doi.org/10.3390/antibiotics11111461
  • Man, S., Bao, H., Xu, K., Yang, H., Sun, Q., Xu, L., Yang, W., Mo, Z., & Li, X. (2021). Preparation and characterization of Nd-Sb co-doped SnO2 nanoflower electrode by hydrothermal method for the degradation of norfloxacin. Chemical Engineering Journal and the Biochemical Engineering Journal., 417, 129266.
  • Marcelino, R. B. P., Leão, M. M. D., Lago, R. M., & Amorim, C. C. (2017). Multistage ozone and biological treatment system for real wastewater containing antibiotics. Journal of Environmental Management, 195(Pt 2), 110–116. https://doi.org/10.1016/j.jenvman.2016.04.041
  • Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews, 24(4), 718–733. https://doi.org/10.1128/CMR.00002-11
  • Manikandan, S., Vickram, S., Deena, R. S., Subbaiya, R., & Karmegam, N. (2024). Critical review on fostering sustainable progress: An in-depth evaluation of cleaner production methodologies and pioneering innovations in industrial processes. Journal of Cleaner Production, 452, 142207. https://doi.org/10.1016/j.jclepro.2024.142207
  • Mascaretti, O. A. (2003). Bacteria versus antibacterial agents. American Society of Microbiology.
  • Masud, M. A. A., Shin, W. S., Septian, A., Samaraweera, H., Khan, I. J., Mohamed, M. M., Billah, M. M., López-Maldonado, E. A., Rahman, M. M., Islam, A. R. M. T., & Rahman, S. (2024). Exploring the environmental pathways and challenges of fluoroquinolone antibiotics: A state-of-the-art review. The Science of the Total Environment, 926, 171944.
  • Mutiyar, P. K., & Mittal, A. K. (2014). Risk assessment of antibiotic residues in different water matrices in India: Key issues and challenges. Environmental Science and Pollution Research, 21(12), 7723–7736. https://doi.org/10.1007/s11356-014-2702-5
  • Navarrete, P., Mardones, P., Opazo, R., Espejo, R., & Romero, J. (2008). Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. Journal of Aquatic Animal Health, 20(3), 177–183. https://doi.org/10.1577/H07-043.1
  • Nie, X., Gu, J., Lu, J., Pan, W., & Yang, Y. (2009). Effects of norfloxacin and butylated hydroxyanisole on the freshwater microalga Scenedesmus obliquus. Ecotoxicology, 18(6), 677–684. https://doi.org/10.1007/s10646-009-0334-1
  • Nie, X. P., Liu, B. Y., Yu, H. J., Liu, W. Q., & Yang, Y. F. (2013). Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environmental Pollution, 172, 23–32. https://doi.org/10.1016/j.envpol.2012.08.013
  • Niu, Z. G., Xu, W. A., Na, J., Lv, Z., & Zhang, Y. (2019). How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: A probable positive factor for red tides. Environmment Pollution, 255, 1.
  • Orimolade, B. O., Zwane, B. N., Koiki, B. A., Tshwenya, L., Peleyeju, G. M., Mabuba, N., Zhou, M., & Arotiba, O. A. (2020). Solar photoelectrocatalytic degradation of ciprofloxacin at a FTO/BiVO4/MnO2 anode: Kinetics, intermediate products and degradation pathway studies. Journal of Environmental Chemical Engineering., 8(1), 103607. https://doi.org/10.1016/j.jece.2019.103607
  • Orimolade, B. O., Oladipo, A. O., Idris, A. O., Usisipho, F., Azizi, S., Maaza, M., Lebelo, S. L., & Mamba, B. B. (2023). Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. Science of the Total Environment, 881, 163522. https://doi.org/10.1016/j.scitotenv.2023.163522
  • Park, H. R., Chung, K. Y., Lee, H. C., Lee, J. K., & Bark, K. M. (2000). Ionization and divalent cation complexation of quinolone antibiotics in aqueous solution. Bulletin-Korean Chemical Society, 21, 849–854.
  • Paucar, N. E., Kim, I., Tanaka, H., & Sato, C. (2019). Effect of O3 dose on the O3/UV treatment process for the removal of pharmaceuticals and personal care products in secondary effluent. Chemical Engineering., 3, 53.
  • Plhalova, L., Zivna, D., Bartoskova, M., Blahova, J., Sevcikova, M., Skoric, M., Marsalek, P., Stancova, V., & Svobodova, Z. (2014). The effects of subchronic exposure to ciprofloxacin on zebrafish (Danio rerio). Neuroendocrinology Letters, 35, 64–70.
  • Poirel, L., Liard, A., Rodriguez-Martinez, J.-M., & Nordmann, P. (2005). Vibrionaceae as a possible source of QNR-like quinolone resistance determinants. Journal of Antimicrobial Chemotherapy, 56(6), 1118–1121. https://doi.org/10.1093/jac/dki371
  • Prete, P., Fiorentino, A., Rizzo, L., Proto, A., & Cucciniello, R. (2021). Review of aminopolycarboxylic acids–based metal complexes application to water and wastewater treatment by (photo-)Fenton process at neutral pH. Current Opinion in Green and Sustainable Chemistry., 28, 100451.
  • Priyadarshini, M., Ahmad, A., Das, S., & Ghangrekar, M. M. (2022). Application of innovative electrochemical and microbial electrochemical technologies for the efficacious removal of emerging contaminants from wastewater: A review. Journal of Environmental Chemical Engineering., 10(5), 108230. https://doi.org/10.1016/j.jece.2022.108230
  • Qiu, W. H., Liu, X. J., Yang, F., Li, R. Z., Xiong, Y., Fu, C. X., Li, G. R., Liu, S., & Zheng, C. M. (2020). Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae. Science of the Total Environment, 716, 137062. https://doi.org/10.1016/j.scitotenv.2020.137062
  • Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. N. (2019). Environmentally related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52–66. https://doi.org/10.1016/j.envint.2018.11.038
  • Reis, E. O., Santos, L. V. S., & Lange, L. C. (2021). Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters. Environmental Pollution, 288, 117803. https://doi.org/10.1016/j.envpol.2021.117803
  • Ren, Z., Xu, H., Wang, Y., Li, Y., Han, S., & Ren, J. (2021). Combined toxicity characteristics and regulation of residual quinolone antibiotics in water environment. Chemosphere, 263, 128301.
  • Ricardo, I. A., Paiva, V. A., Paniagua, C. E., & Trovo, A. G. (2018). Chloramphenicol photo-Fenton degradation and toxicity changes in both surface water and a tertiary effluent from a municipal wastewater treatment plant at near-neutral conditions. Chemical Engineering Journal and the Biochemical Engineering Journal., 347, 763–770.
  • Rico, A., Dimitrov, M. R., Van Wijngaarden, R. P. A., Satapornvanit, K., Smidt, H., & Van den Brink, P. J. (2014). Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquatic Toxicology, 147, 92–104. https://doi.org/10.1016/j.aquatox.2013.12.008
  • Rico, A., Oliveira, R., McDonough, S., Matser, A., Khatikarn, J., Satapornvanit, K., Nogueira, A. J. A., Soares, A. M. V. M., Domingues, I., & Van den Brink, P. J. (2014). Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environmental Pollution, 191, 8–16. https://doi.org/10.1016/j.envpol.2014.04.002
  • Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquino lone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry, 24(2), 423–430. https://doi.org/10.1897/04-210R.1
  • Rodrigues-Silva, C., Maniero, M. G., Rath, S., & Guimaraes, J. R. (2013). Degradation of flumequine by the Fenton and photo-Fenton processes: evaluation of residual antimicrobial activity. Science of the Total Environment., 445, 337–346.
  • Roose-Amsaleg, C., & Laverman, A. M. (2015). Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environmental Science and Pollution Research, 23(5), 4000–4012. https://doi.org/10.1007/s11356-015-4943-3
  • Rosas-Ramírez, J. R., Orozco-Hernández, J. M., Elizalde-Velázquez, G. A., Raldúa, D., Islas-Flores, H., & Gómez-Oliván, L. M. (2021). Teratogenic effects induced by paracetamol, ciprofloxacin, and their mixture on Danio rerio embryos: Oxidative stress implications. Science of the Total Environment, 806, 150541. https://doi.org/10.1016/j.scitotenv.2021.150541
  • Rutgersson, C., Fick, J., Marathe, N., Kristiansson, E., Janzon, A., Angelin, M., Johansson, A., Shouche, Y., Flach, C.-F., & Larsson, D. G. J. (2014). Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environmental Science & Technology, 48(14), 7825–7832. https://doi.org/10.1021/es501452a
  • Sayre, L. M., Moreira, P. I., Smith, M. A., & Perry, G. (2005). Metal ions and oxidative protein modification in neurological disease. Annali Dell Istituto Superiore Di Sanita, 41, 143–164.
  • Sealey, J. E., Hammond, A., Reyher, K. K., & Avison, M. B. (2023). One health transmission of fluoroquinolone-resistant Escherichia coli and risk factors for their excretion by dogs living in urban and nearby rural settings. One Health, 17, 100640. https://doi.org/10.1016/j.onehlt.2023.100640
  • Seo, J. S., Jeon, E. J., Lee, E. H., Jung, S. H., Park, M. A., Jee, B. Y., & Kim, N. Y. (2013). The residues of enrofloxacin in cultured Paralichthys olivaceus. Journal of Fish Pathology, 26(1), 45–50. https://doi.org/10.7847/jfp.2012.26.1.045
  • Shankaraiah, G., Poodari, S., Bhagawan, D., Himabindu, V., & Vidyavathi, S. (2016). Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs)—a comparative study. Desalination Water Treat, 57, 27804–27815.
  • Shen, R., Yu, Y., Lan, R., Yu, R., Yuan, Z., & Xia, Z. (2019). The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environmental Pollution, 254, 112861 https://doi.org/10.1016/j.envpol.2019.07.029
  • Shi, F., Huang, Y., Yang, M. X., Lu, Z. J., Li, Y. A., Zhan, F. B., Lin, L., & Qin, Z. D. (2022). Antibiotic-induced alternations in gut microflora are associated with the suppression of immune-related pathways in grass carp (Ctenopharyngodon idellus). Frontiers in Immunology, 13, 970125. https://doi.org/10.3389/fimmu.2022.970125
  • Shi, Z. F., Zhang, J., Tian, L., Xin, L., Liang, C. Y., Ren, X. D., & Li, M. (2023). A comprehensive overview of the antibiotics approved in the last two decades: Retrospects and prospects. Molecules, 28(4), 1762. https://doi.org/10.3390/molecules28041762
  • Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Irastorza, E. A., Fasani, E., & Albini, A. (2012). Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Applied Catalysis B: Environment, 119, 32–39.
  • Tasca, A. L., Clematis, D., Stefanelli, E., Panizza, M., & Puccini, M. (2020). Ciprofloxacin removal: BDD anode coupled with solid polymer electrolyte and ultrasound irradiation. Journal of Water Process Engineering, 33, 101074. https://doi.org/10.1016/j.jwpe.2019.101074
  • Thai, V., Dang, V. D., Thuy, N. T., Pandit, B., Vo, T. K. Q., & Khedulkar, A. P. (2023). Fluoroquinolones: Fate, effects on the environment and selected removal methods. Journal of Cleaner Production, 418, 137762. https://doi.org/10.1016/j.jclepro.2023.137762
  • Thuy, H. T. T., Nga, L. P., & Loan, T. T. C. (2011). Antibiotic contaminants in coastal wetlands from Vietnamese shrimp farming. Environmental Science Pollution Research, 18, 835–841.
  • Tu, H. T., Silvestre, F., Bernard, A., Douny, C., Phuong, N. T., Tao, C. T., Maghuin-Rogister, G., & Kestemont, P. (2008). Oxidative stress response of black tiger shrimp (Penaeus monodon) to enrofloxacin and to culture system. Aquaculture, 285(1–4), 244–248. https://doi.org/10.1016/j.aquaculture.2008.08.032
  • Wang, C., Lu, Y., Sun, B., Zhang, M., Wang, C., Xiu, C., Johnson, A. C., & Wang, P. (2023). Ecological and human health risks of antibiotics in marine species through mass transfer from sea to land in a coastal area: A case study in Qinzhou Bay, the South China sea. Environmental Pollution (Barking, Essex: 1987), 316(Pt 1), 120502. https://doi.org/10.1016/j.envpol.2022.120502PMC:
  • Wang, G. X., Zhang, Q., Li, J. L., Chen, X. Y., Lang, Q. L., & Kuang, S. P. (2019). Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. Aquatic Toxicology, 212, 138–145. https://doi.org/10.1016/j.aquatox.2019.05.004
  • Wang, J., & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: an overview. Science of the Total Environment., 701, 135023. https://doi.org/10.1016/j.scitotenv.2019.135023
  • Wang, L., Zhang, W., Wang, J., Zhu, L., Wang, J., Yan, S., & Ahmad, Z. (2019). Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil. Environmental Geochemistry and Health, 41(6), 2593–2606. https://doi.org/10.1007/s10653-019-00307-5
  • Wang, N., Noemie, N., Hien, N. N., Huynh, T. T., Silvestre, F., Phuong, N. T., Danyi, S., Widart, J., Douny, C., Scippo, M. L., Kestemont, P., & Huong, D. T. T. (2009). Adverse effects of enrofloxacin when associated with environmental stress in Tra catfish (Pangasianodon hypophthalmus). Chemosphere, 77(11), 1577–1584. https://doi.org/10.1016/j.chemosphere.2009.09.038
  • Wang, N., Wang, N., Qi, D., Kang, G., Wang, W., Zhang, C., Zhang, Z., Zhang, Y., Zhang, H., Zhang, S., & Xu, J. (2023). Comprehensive overview of antibiotic distribution, risk and priority: A study of large-scale drinking water sources from the lower Yangtze River. Journal of Environmental Management, 344, 118705. https://doi.org/10.1016/j.jenvman.2023.118705
  • Wang, Y., Chen, J., Gao, J., Meng, H., Chai, S., Jian, Y., Shi, L., Wang, Y., & He, C. (2021). Selective electrochemical H2O2 generation on the graphene aerogel for efficient electroFenton degradation of ciprofloxacin. Separation and Purification Technology., 272, 118884.
  • Wright, M. S., Baker-Austin, C., Lindell, A. H., Stepanauskas, R., Stokes, H. W., & McArthur, J. V. (2008). Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. The ISME Journal, 2(4), 417–428. https://doi.org/10.1038/ismej.2008.8
  • Xia, Y., & Dai, Q. (2018). Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode:kinetics, energy demands and reaction pathways. Chemosphere, 205, 215–222. https://doi.org/10.1016/j.chemosphere.2018.04.103
  • Xiong, J. Q., Govindwar, S., Kurade, M. B., Paeng, K. J., Roh, H. S., Khan, M. A., & Jeon, B. H. (2019). Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere, 218, 551–558. https://doi.org/10.1016/j.chemosphere.2018.11.146
  • Xu, Y. H., Wei, X. L., Xu, Y. C., Zhang, D. G., Zhao, T., Zheng, H., & Luo, Z. (2022). Waterborne enrofloxacin exposure activated oxidative stress and MAPK pathway, induced apoptosis and resulted in immune dysfunction in the gills of yellow catfish Pelteobagrus fulvidraco. Aquaculture, 547, 737541. https://doi.org/10.1016/j.aquaculture.2021.737541
  • Yahya, M. S., Kaichouh, G., Khachani, M., Karbane, M., El, Arshad, M. A., Zarrouk, A., Kacemi, K. & El, (2020). Mineralization of ofloxcacin antibiotic in aqueous medium by electroFenton process using a carbon felt cathode: Influencing factors. Analytical and Bioanalytical Electrochemistry, 12, 425–426.
  • Yang, L. H., Ying, G. G., Su, H. C., Stauber, J. L., Adams, M. S., & Binet, M. T. (2008). Growth inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry, 27(5), 1201–1208. https://doi.org/10.1897/07-471.1
  • Yang, Q. L., Gao, Y., Ke, J., Show, P. L., Ge, Y. H., Liu, Y. H., Guo, R. X., & Chen, J. Q. (2021). Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376–7416. https://doi.org/10.1080/21655979.2021.1974657
  • Yao, B., Luo, Z., Yang, J., Zhi, D., & Zhou, Y. (2021). FeIIFeIII layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process. Environmental Research, 197, 111144. https://doi.org/10.1016/j.envres.2021.111144
  • Yeom, Y., Han, J., Zhang, X., Shang, C., & Dionysiou, D. D. (2021). A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants. Chemical Engineering Journal, 424, 130053.
  • Yun, S. H., Jho, E. H., Jeong, S., Choi, S., Kal, Y., & Cha, S. (2018). Photodegradation of tetracycline and sulfathiazole individually and in mixtures. Food and Chemical Toxicology, 116, 108–113. https://doi.org/10.1016/j.fct.2018.03.037
  • Zarei-Baygi, A., Harb, M., Wang, P., Stadler, L. B., & Smith, A. L. (2019). Evaluating antibiotic resistance gene correlations with antibiotic exposure conditions in anaerobic membrane bioreactors. Environmental Science & Technology, 53(7), 3599–3609. https://doi.org/10.1021/acs.est.9b00798
  • Zheng, S. M., Wang, Y. D., Chen, C. H., Zhou, X. J., Liu, Y., Yang, J. M., Geng, Q. J., Chen, G., Ding, Y. Z., & Yang, F. X. (2022). Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: A review. International Journal of Environmental Research and Public Health, 19(17), 10919. https://doi.org/10.3390/ijerph191710919
  • Zhang, T., & Li, B. (2011). Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Critical Reviews in Environmental Science and Technology, 41(11), 951–998. https://doi.org/10.1080/10643380903392692
  • Zhang, T., & Li, B. (2011). Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Journal of Critical Reviews in Environmental Science and Technology, 41, 951–998.
  • Zhang, Y. Y., Wang, L. F., Zhuang, H., Li, X. X., Gao, X. J., An, Z. H., Liu, X. D., Yang, H., Wei, W. Z., & Zhang, X. J. (2019). Excessive use of enrofloxacin leads to growth inhibition of juvenile giant freshwater prawn Macrobrachium rosenbergii. Ecotoxicology and Environmental Safety, 169, 344–352. https://doi.org/10.1016/j.ecoenv.2018.11.042
  • Zhao, H. X., Quan, W. N., Bekele, T. G., Chen, M., Zhang, X., & Qu, B. C. (2018). Effect of copper on the accumulation and elimination kinetics of fluoroquinolones in the zebrafish (Dario rerio). Ecotoxicology and Environmental Safety, 156, 135–140. https://doi.org/10.1016/j.ecoenv.2018.03.025
  • Zhao, L., Dong, Y. H., & Wang, H. (2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 408(5), 1069–1075. https://doi.org/10.1016/j.scitotenv.2009.11.014
  • Zhao, Y., Huang, Y. P., Hu, S., Xu, T., Fang, Y. F., Liu, H. G., Xi, Y., & Qu, R. (2023). Combined effects of fluoroquinolone antibiotics and organophosphate flame retardants on Microcystis aeruginosa. Environmental Science and Pollution Research, 30(18), 53050–53062. https://doi.org/10.1007/s11356-023-25974-x
  • Zheng, X., Xu, S., Wang, Y., Sun, X., Gao, Y., & Gao, B. (2018). Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. Journal of Colloid and Interface Science., 527, 202–213. https://doi.org/10.1016/j.jcis.2018.05.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.