30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cadmium and ketoprofen accumulation influences aquatic ecosystem demonstrated using in-vivo zebrafish model

, , , , , , , & show all
Received 31 Jan 2024, Accepted 31 May 2024, Published online: 23 Jun 2024

References

  • Alkimin, G. D., Soares, A. M. V. M., Barata, C., & Nunes, B. (2020). Evaluation of ketoprofen toxicity in two freshwater species: Effects on biochemical, physiological and population endpoints. Environmental Pollution (Barking, Essex: 1987), 265(Pt B), 114993 https://doi.org/10.1016/j.envpol.2020.114993
  • Alquezar, R., Markich, S. J., & Booth, D. J. (2006). Metal accumulation in the smooth toadfish, Tetractenos glaber in estuaries around Sydney, Australia. Environmental Pollution (Barking, Essex: 1987), 142(1), 123–131. https://doi.org/10.1016/j.envpol.2005.09.010
  • Arini, A., Gourves, P. Y., Gonzalez, P., & Baudrimont, M. (2015). Metal detoxification and gene expression regulation after a Cd and Zn contamination: An experimental study on Danio rerio. Chemosphere, 128, 125–133. https://doi.org/10.1016/j.chemosphere.2015.01.022
  • Azize Al Sawafi, A. G., Wang, L., & Yan, Y. (2017). Cadmium Accumulation and Its Histological Effect on Brain and Skeletal Muscle of Zebrafish. Journal of Heavy Metal Toxicity and Diseases, 2, 6. https://doi.org/10.21767/2473-6457.100017
  • Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195(1), 133–140.
  • Bernt, E., & Bergmeyer, H. U. (1974). l-Glutamate UV-Assay with gutamate dehydrogenase and NAD. Methods of Enzymatic Analysis, 4, 1704–1715. https://doi.org/10.1016/B978-0-12-091304-6.50017-3
  • Borvinskaya, E., Gurkov, A., Shchapova, E., Mutin, A., & Timofeyev, M. (2021). Histopathological analysis of zebrafish after introduction of non-biodegradable polyelectrolyte microcapsules into the circulatory system. PeerJ., 9, e11337. https://doi.org/10.7717/peerj.11337
  • Bownik, A., Jasieczek, M., & Kosztowny, E. (2020). Ketoprofen affects swimming behavior and impairs physiological endpoints of Daphnia magna. The Science of the Total Environment, 725, 138312. https://doi.org/10.1016/j.scitotenv.2020.138312
  • Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., & Chen, Z. (2016). Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. The Science of the Total Environment, 566-567, 1660–1669. https://doi.org/10.1016/j.scitotenv.2016.06.069
  • Cope, W. G., Wiener, J. G., Steingraeber, M. T., & Atchison, G. J. (1994). Cadmium, Metal-binding Proteins, and Growth in Bluegill (Lepomis macrochirus) Exposed to Contaminated Sediments from the Upper Mississippi River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 51(6), 1356–1367. https://doi.org/10.1139/f94-135
  • De-Zwart, D., & Posthuma, L. (2005). Complex mixture toxicity for single and multiple species: Proposed methodologies. Environmental Toxicology and Chemistry, 24(10), 2665–2676. https://doi.org/10.1897/04-639R.1
  • Diniz, M. S., Salgado, R., Pereira, V. J., Carvalho, G., Oehmen, A., Reis, M. A. M., & Noronha, J. P. (2015). Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). The Science of the Total Environment, 505, 282–289. https://doi.org/10.1016/j.scitotenv.2014.09.103
  • Dwivedi, A. K., & Vankar, P. S. (2014). Source identification study of heavy metal contamination in the industrial hub of Unnao, India. Environmental Monitoring and Assessment, 186(6), 3531–3539. https://doi.org/10.1007/s10661-014-3636-6
  • Ekpeghere, K. I., Lee, J.-W., Kim, H.-Y., Shin, S.-K., & Oh, J.-E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077
  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Elmorsi, Y. M., El-Haggar, S. M., Ibrahim, O. M., & Mabrouk, M. M. (2013). Effect of ketoprofen and indomethacin on methotrexate pharmacokinetics in mice plasma and tumor tissues. European Journal of Drug Metabolism and Pharmacokinetics, 38(1), 27–32. https://doi.org/10.1007/s13318-012-0113-x
  • Favorito, R., Chiarelli, G., Grimaldi, M. C., de Bonis, S., Lancieri, M., & Ferrandino, I. (2011). Bioaccumulation of cadmium and its cytotoxic effect on zebrafish brain. Chemistry and Ecology., 27(sup2), 39–46. https://doi.org/10.1080/02757540.2011.625937
  • Frasco, M. F., & Guilhermino, L. (2002). Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. Fish Physiology and Biochemistry, 26(2), 149–156. https://doi.org/10.1023/A:1025457831923
  • Gao, Y. Q., Zhou, J. Q., Rao, Y. Y., Ning, H., Zhang, J., Shi, J., & Gao, N. Y. (2022). Comparative study of degradation of ketoprofen and paracetamol by ultrasonic irradiation: Mechanism, toxicity and DBP formation. Ultrasonics Sonochemistry, 82, 105906. https://doi.org/10.1016/j.ultsonch.2021.105906
  • Guo, S.-N., Zheng, J.-L., Yuan, S.-S., & Zhu, Q.-L. (2018). Effects of heat and cadmium exposure on stress-related responses in the liver of female zebrafish: Heat increases cadmium toxicity. The Science of the Total Environment, 618, 1363–1370. https://doi.org/10.1016/j.scitotenv.2017.09.264
  • Haridevamuthu, B., Manjunathan, T., Guru, A., Kumar, R. S., Rajagopal, R., Kuppusamy, P., Juliet, A., Gopinath, P., & Arockiaraj, J. (2022). Hydroxyl containing benzo[b]thiophene analogs mitigates the acrylamide induced oxidative stress in the zebrafish larvae by stabilizing the glutathione redox cycle. Life Sciences, 298, 120507. https://doi.org/10.1016/j.lfs.2022.120507
  • He, Y.-Y., Ramirez, D. C., Detweiler, C. D., Mason, R. P., & Chignell, C. F. (2003). UVA-ketoprofen–induced hemoglobin radicals detected by immuno–spin trapping. Photochemistry and Photobiology, 77(6), 585. https://doi.org/10.1562/0031-8655(2003)077<0585:UHRDBI>2.0.CO;2
  • Hejna, M., Kapuścińska, D., & Aksmann, A. (2022). Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. International Journal of Environmental Research and Public Health, 19(13), 7717. https://doi.org/10.3390/ijerph19137717
  • Issac, P. K., Guru, A., Velayutham, M., Pachaiappan, R., Arasu, M. V., Al-Dhabi, N. A., Choi, K. C., Harikrishnan, R., & Arockiaraj, J. (2021). Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sciences, 283, 119864. https://doi.org/10.1016/j.lfs.2021.119864
  • Jayakumar, N., Francis, T., Jawahar, P., Rajagopalsamy, C. B. T., Santhakumar, R., & Subburaj, A. (2016). Acute cadmium toxicity induced impairments in the liver and kidney of freshwater catfish, Heteropneustes fossilis (Bloch). Indian Journal of Science and Technology, 9(8), 1–6. https://doi.org/10.17485/ijst/2016/v9i8/82144
  • Jin, Y., Liu, Z., Liu, F., Ye, Y., Peng, T., & Fu, Z. (2015). Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicology and Teratology, 48, 9–17. https://doi.org/10.1016/j.ntt.2015.01.002
  • Kodzhahinchev, V., Shekh, K., Weber, L. P., & Niyogi, S. (2021). Interactive effects of cadmium and Benzo[a]pyrene in adult zebrafish (Danio rerio) during short-term aqueous co-exposure. Environmental Pollution (Barking, Essex: 1987), 272, 116027. https://doi.org/10.1016/j.envpol.2020.116027
  • Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388
  • Lu, K., Qiao, R., An, H., & Zhang, Y. (2018). Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere, 202, 514–520. https://doi.org/10.1016/j.chemosphere.2018.03.145
  • Madesh, S., Sudhakaran, G., Sreekutty, A. R., Kesavan, D., Almutairi, B. O., Arokiyaraj, S., Dhanaraj, M., Seetharaman, S., & Arockiaraj, J. (2023). Exploring neem aqueous extracts as an eco-friendly strategy to enhance shrimp health and combat EHP in aquaculture. Aquaculture International, 32(3), 3357–3377. https://doi.org/10.1007/s10499-023-01326-x
  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  • Matz, C. J., Treble, R. G., & Krone, P. H. (2007). Accumulation and elimination of cadmium in larval stage zebrafish following acute exposure. Ecotoxicology and Environmental Safety, 66(1), 44–48. https://doi.org/10.1016/j.ecoenv.2005.11.001
  • McGeer, J. C., Niyogi, S., & Scott Smith, D. (2011). Cadmium. Fish Physiology 125–184. https://doi.org/10.1016/S1546-5098(11)31025-4
  • Mennillo, E., Pretti, C., Cappelli, F., Luci, G., Intorre, L., Meucci, V., & Arukwe, A. (2020). Novel organ-specific effects of Ketoprofen and its enantiomer, dexketoprofen on toxicological response transcripts and their functional products in salmon. Aquatic Toxicology (Amsterdam, Netherlands), 229, 105677. https://doi.org/10.1016/j.aquatox.2020.105677
  • Mladenović, J., Ognjanović, B., Dorđević, N., Matić, M., Knežević, V., Stajn, A., & Saičić, Z. (2014). Protective effects of oestradiol against cadmium-induced changes in blood parameters and oxidative damage in rats. Arhiv za Higijenu Rada i Toksikologiju, 65(1), 37–46. https://doi.org/10.2478/10004-1254-65-2014-2405
  • Monteiro, J., Martins, S., Farias, M., Costa, T., & Certal, A. (2018). The impact of two different cold-extruded feeds and feeding regimens on zebrafish survival, growth and reproductive performance. Journal of Developmental Biology, 6(3), 15. https://doi.org/10.3390/jdb6030015
  • Murugan, R., Haridevamuthu, B., Kumar, R. S., Almutairi, B. O., Arokiyaraj, S., & Arockiaraj, J. (2023a). Deacetyl epoxyazadiradione ameliorates BPA-induced neurotoxicity by mitigating ROS and inflammatory markers in N9 cells and zebrafish larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 271, 109692. https://doi.org/10.1016/j.cbpc.2023.109692
  • Murugan, R., Subramaniyan, S., Priya, S., Ragavendran, C., Arasu, M. V., Al-Dhabi, N. A., Choi, K. C., Guru, A., & Arockiaraj, J. (2023b). Bacterial clearance and anti-inflammatory effect of Withaferin A against human pathogen of Staphylococcus aureus in infected zebrafish. Aquatic Toxicology (Amsterdam, Netherlands), 260, 106578. https://doi.org/10.1016/j.aquatox.2023.106578
  • Nayak, S. P. R. R., Boopathi, S., Priya, P. S., Pasupuleti, M., Pachaiappan, R., Almutairi, B. O., Arokiyaraj, S., & Arockiaraj, J. (2023a). Luteolin, a promising quorum quencher mitigates virulence factors production in Pseudomonas aeruginosa: In vitro and in vivo approach. Microbial Pathogenesis, 180, 106123. https://doi.org/10.1016/j.micpath.2023.106123
  • Nayak, S. P. R. R., Dhivya, L. S., R, R., Almutairi, B. O., Arokiyaraj, S., Kathiravan, M. K., & Arockiaraj, J. (2023b). Furan based synthetic chalcone derivative functions against gut inflammation and oxidative stress demonstrated in in-vivo zebrafish model. European Journal of Pharmacology, 957, 175994. https://doi.org/10.1016/j.ejphar.2023.175994
  • Ossowicz, P., Kardaleva, P., Guncheva, M., Klebeko, J., Świątek, E., Janus, E., Yancheva, D., & Angelov, I. (2019). Ketoprofen-based ionic liquids: Synthesis and interactions with bovine serum albumin. Molecules (Basel, Switzerland), 25(1), 90. https://doi.org/10.3390/molecules25010090
  • Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.
  • Prášková, E., Štěpánová, S., Chromcová, L., Plhalová, L., Voslářová, E., Pištěková, V., Prokeš, M., & Svobodová, Z. (2013). The effects of subchronic exposure to ketoprofen on early developmental stages of common carp. Acta Veterinaria Brno, 82(3), 343–347. https://doi.org/10.2754/avb201382030343
  • Praskova, E., Voslarova, E., Siroka, Z., Macova, S., Plhalova, L., Bedanova, I., Marsalek, P., Pistekova, V., & Svobodova, Z. (2011). Comparison of acute toxicity of ketoprofen to juvenile and embryonic stages of Danio rerio. Neuro Endocrinology Letters, 32 (Suppl 1), 117–120.
  • Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., Briceño-Guevara, S., Rojas-Sánchez, C. E., Méndez-Rivera, M., Arias-Mora, V., Tormo-Budowski, R., Brenes-Alfaro, L., & Rodríguez-Rodríguez, C. E. (2020). Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. The Science of the Total Environment, 746, 141200. https://doi.org/10.1016/j.scitotenv.2020.141200
  • Rangasamy, B., Hemalatha, D., Shobana, C., Nataraj, B., & Ramesh, M. (2018). Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere, 213, 423–433. https://doi.org/10.1016/j.chemosphere.2018.09.013
  • Rangsayatorn, N., Kruatrachue, M., Pokethitiyook, P., Upatham, E. S., Lanza, G. R., & Singhakaew, S. (2004). Ultrastructural changes in various organs of the fish Puntius gonionotus fed cadmium‐enriched cyanobacteria. Environmental Toxicology, 19(6), 585–593. https://doi.org/10.1002/tox.20066
  • Rehman, N., Khalid, M., Bhatti, M. H., Yunus, U., Braga, A. A. C., Ahmed, F., Mashhadi, S. M. A., & Tahir, M. N. (2018). Schiff base of isoniazid and ketoprofen: synthesis, X-ray crystallographic, spectroscopic, antioxidant, and computational studies. Turkish Journal of Chemistry, 42, 639–651. https://doi.org/10.3906/kim-1706-45
  • Renieri, E., Alegakis, A., Kiriakakis, M., Vinceti, M., Ozcagli, E., Wilks, M., & Tsatsakis, A. (2014). Cd, Pb and Hg Biomonitoring in Fish of the Mediterranean Region and Risk Estimations on Fish Consumption. Toxics, 2(3), 417–442. https://doi.org/10.3390/toxics2030417
  • Renieri, E. A., Sfakianakis, D. G., Alegakis, A. A., Safenkova, I. V., Buha, A., Matović, V., Tzardi, M., Dzantiev, B. B., Divanach, P., Kentouri, M., & Tsatsakis, A. M. (2017). Nonlinear responses to waterborne cadmium exposure in zebrafish. An in vivo study. Environmental Research, 157, 173–181. https://doi.org/10.1016/j.envres.2017.05.021
  • Sæbø, I. P., Bjørås, M., Franzyk, H., Helgesen, E., & Booth, J. A. (2023). Optimization of the hemolysis assay for the assessment of cytotoxicity. International Journal of Molecular Sciences, 24(3), 2914. https://doi.org/10.3390/ijms24032914
  • Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21(2), 921–931. https://doi.org/10.1007/s11356-013-1957-6
  • Subedi, B., Balakrishna, K., Sinha, R. K., Yamashita, N., Balasubramanian, V. G., & Kannan, K. (2015). Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. Journal of Environmental Chemical Engineering, 3(4), 2882–2891. https://doi.org/10.1016/j.jece.2015.09.031
  • Sudhakaran, G., Chandran, A., Sreekutty, A. R., Madesh, S., Pachaiappan, R., Almutairi, B. O., Arokiyaraj, S., Kari, Z. A., Tellez-Isaias, G., Guru, A., & Arockiaraj, J. (2023). Ophthalmic intervention of naringenin decreases vascular endothelial growth factor by counteracting oxidative stress and cellular damage in in vivo zebrafish. Molecules (Basel, Switzerland), 28(14), 5350. https://doi.org/10.3390/molecules28145350
  • Thalla, A. K., & Vannarath, A. S. (2020). Response to letter to the editor on the paper “occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India.” Environmental Monitoring and Assessment, 192(9), 609. https://doi.org/10.1007/s10661-020-08576-9
  • Tong, F., Liu, D., Zhang, Z., Chen, W., Fan, G., Gao, Y., Gu, X., & Gu, C. (2023). Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation. Environmental Research, 216(Pt 3), 114716. https://doi.org/10.1016/j.envres.2022.114716
  • Torrinha, Á., Martins, M., Tavares, M., Delerue-Matos, C., & Morais, S. (2021). Carbon paper as a promising sensing material: Characterization and electroanalysis of ketoprofen in wastewater and fish. Talanta, 226, 122111. https://doi.org/10.1016/j.talanta.2021.122111
  • Tyumina, E., Subbotina, M., Polygalov, M., Tyan, S., & Ivshina, I. (2023). Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Frontiers in Microbiology, 14, 1200108. https://doi.org/10.3389/fmicb.2023.1200108
  • Vergauwen, L., Knapen, D., Hagenaars, A., & Blust, R. (2013). Hypothermal and hyperthermal acclimation differentially modulate cadmium accumulation and toxicity in the zebrafish. Chemosphere, 91(4), 521–529. https://doi.org/10.1016/j.chemosphere.2012.12.028
  • Wang, J., Zhao, S. Q., Zhang, M. Y., & He, B. S. (2018). Targeted eco-pharmacovigilance for ketoprofen in the environment: Need, strategy and challenge. Chemosphere, 194, 450–462. https://doi.org/10.1016/j.chemosphere.2017.12.020
  • Xie, Z., Luan, H., Zhang, Y., Wang, M., Cao, D., Yang, J., Tang, J., Fan, S., Wu, X., & Hua, R. (2020). Interactive effects of diclofenac and copper on bioconcentration and multiple biomarkers in crucian carp (Carassius auratus). Chemosphere, 242, 125141, https://doi.org/10.1016/j.chemosphere.2019.125141
  • Xu, C., Niu, L., Guo, H., Sun, X., Chen, L., Tu, W., Dai, Q., Ye, J., Liu, W., & Liu, J. (2019). Long-term exposure to the non-steroidal anti-inflammatory drug (NSAID) naproxen causes thyroid disruption in zebrafish at environmentally relevant concentrations. The Science of the Total Environment, 676, 387–395. https://doi.org/10.1016/j.scitotenv.2019.04.323
  • Zhang, Y., Cai, X., Lang, X., Qiao, X., Li, X., & Chen, J. (2012). Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture. Environmental Pollution (Barking, Essex: 1987), 166, 48–56. https://doi.org/10.1016/j.envpol.2012.03.009
  • Zheng, J. L., Yuan, S. S., Wu, C. W., & Lv, Z. M. (2016). Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquatic Toxicology (Amsterdam, Netherlands), 180, 36–44. https://doi.org/10.1016/j.aquatox.2016.09.012
  • Zulkarnain, N. N., Anuar, N., Johari, N. A., Sheikh Abdullah, S. R., & Othman, A. R. (2020). Cytotoxicity evaluation of ketoprofen found in pharmaceutical wastewater on HEK 293 cell growth and metabolism. Environmental Toxicology and Pharmacology, 80, 103498. https://doi.org/10.1016/j.etap.2020.103498

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.