503
Views
18
CrossRef citations to date
0
Altmetric
Articles

From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region

ORCID Icon, , , , , , , , , & show all
Pages 416-453 | Received 19 Dec 2016, Accepted 29 Apr 2017, Published online: 28 Jun 2017

References

  • Ågren, J. 2009. Beskrivning av de nationella geoidmodellerna SWEN08_RH2000 och SWEN08_RH70 (Description of national geoid models SWEN08_RH2000 and SWEN08_RH70) (No. 2009:1). Reports in Geodesy and Geographic Information Systems. Gävle, Sweden.
  • Ågren, J. 2004. Regional geoid determination methods for the era of satellite gravimetry: numerical investigations using synthetic earth gravity models. KTH Royal Institute of Technology, Stockholm, Sweden.
  • Ågren, J., and L.E. Sjöberg. 2014. Investigation of gravity data requirements for a 5 mm-quasigeoid model over Sweden. Gravity, Geoid and Height Systems: Proceedings of the IAG Symposium (GGHS'12). Venice, Italy, Springer International Publishing, pp. 143–150.
  • Ågren, J., L.E. Sjöberg, and R. Kiamehr. 2009. The new gravimetric quasigeoid model KTH08 over Sweden. Journal of Applied Geodesy 3:143–153. doi:10.1515/JAG.2009.015
  • Ågren, J., G. Strykowski, M. Bilker-Koivula, O. Omang, S. Märdla, R. Forsberg, A. Ellmann, T. Oja, I. Liepinš, E. Paršeliūnas, J. Kaminskis, L. Sjöberg, and G. Valsson. 2016. The NKG2015 gravimetric geoid model for the Nordic-Baltic region. 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems. Thessaloniki, Greece, 19–23 September.
  • Ågren, J., G. Strykowski, M. Bilker-Koivula, O. Omang, S. Märdla, T. Oja, I. Liepinš, E. Paršeliūnas, R. Forsberg, J. Kaminskis, A. Ellmann, L. Sjöberg, and V. Valsson. 2015. On the development of the new Nordic gravimetric geoid model NKG2015. 26th IUGG General Assembly. Prague, Czech Republic, June 22–July 2.
  • Andersen, O.B. 2010. The DTU10 Global Gravity field and mean sea surface. 2nd International Symposium of the Gravity Field of the Earth (IGFS2). Fairbanks, Alaska.
  • Andersen, O.B., and P. Knudsen. 2016. Deriving and evaluating the DTU15 Global high resolution marine gravity field. 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems. Thessaloniki, Greece, 19–23 September.
  • Bae, T.-S., J. Lee, J.H. Kwon, and C.-K. Hong. 2012. Update of the precision geoid determination in Korea. Geophysical Prospecting 60:555–571. doi:10.1111/j.1365-2478.2011.01017.x
  • Baptiste, J., G. Martelet, M. Faure, L. Beccaletto, P.-A. Reninger, J. Perrin, and Y. Chen. 2016. Mapping of a buried basement combining aeromagnetic, gravity and petrophysical data: The substratum of southwest Paris Basin, France. Tectonophysics 683:333–348. doi:10.1016/j.tecto.2016.05.049
  • Barzaghi, R., G. Vergos, A. Albertella, D. Carrion, N.E. Cazzaniga, I. Tziavos, V. Grigoriadis, D. Natsiopoulos, S. Bruinsma, S. Bonvalot, L. Seoane, F. Reinquin, M.-F. LeQuentrec-Lalancette, C. Salaun, P. Bonnefond, P. Knudsen, O. Andersen, M. Simav, H. Yildiz, T. Basic, M. Varga, O. Bjelotomic, and A.J. Gil. 2016. Gravimetric geoid model development in the Mediterranean Sea within the Geomed2 project. 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems. Thessaloniki, Greece, 19–23 September.
  • Bilker-Koivula, M. 2014. Assessment of high-resolution global gravity field models and their application in quasi-geoid modelling in Finland. Marti, U. (ed.), Gravity, Geoid and Height Systems: Proceedings of the IAG Symposium (GGHS'12), October 9–12:2012, Venice, Italy: International Association of Geodesy Symposia. Springer, pp. 51–58.
  • Bilker-Koivula, M. 2010. Development of the Finnish Height Conversion Surface FIN2005N00. Nordic Journal of Surveying and Real Estate Research 7:76–88.
  • Bolkas, D., G. Fotopoulos, and A. Braun. 2016. On the impact of airborne gravity data to fused gravity field models. Journal of Geodesy 90:561–571. doi:10.1007/s00190-016-0893-x
  • Bruinsma, S.L., C. Förste, O. Abrikosov, J.-C. Marty, M.-H. Rio, S. Mulet, and S. Bonvalot. 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters 40:3607–3612. doi:10.1002/grl.50716
  • Cressie, N. 2015. Statistics for Spatial Data, 2nd ed. Hoboken, NJ: Wiley-Interscience.
  • Darbeheshti, N., and W.E. Featherstone. 2009. Non-stationary covariance function modelling in 2D least-squares collocation. Journal of Geodesy 83:495–508. doi:10.1007/s00190-008-0267-0
  • Denker, H. 2016. A new European Gravimetric (Quasi)Geoid EGG2015. 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems. Thessaloniki, Greece, 19–23 September.
  • Denker, H. 2013. Regional gravity field modeling: Theory and practical results. Xu, G. (ed.), Sciences of Geodesy—II. Berlin/Heidelberg: Springer, pp. 185–291.
  • Denker, H., J.-P. Barriot, R. Barzaghi, D. Fairhead, R. Forsberg, J. Ihde, A. Kenyeres, U. Marti, M. Sarrailh, and I.N. Tziavos. 2009. The development of the European gravimetric geoid model EGG07. Sideris, M.G. (ed.). Observing Our Changing Earth: Proceedings of the 2007 IAG General Assembly, Perugia, Italy, July 2–13, 2007, International Association of Geodesy Symposia. Berlin/Heidelberg: Springer, pp. 177–185.
  • Dermanis, A. 1984. Kriging and Collocation—A Comparison. Manuscripta Geodetica 9:159–167.
  • DMA. 1987. Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part II—Parameters, Formulas and Graphics for the Practical Application of WGS84 (Technical Report No. 8350.2-B). Defence Mapping Agency.
  • Elkins, T.A. 1951. The second derivative method of gravity interpretation. Geophysics 16:29–50. doi:10.1190/1.1437648
  • Ellmann, A. 2011. Downward continuation of airborne gravity data using high resolution global geopotentail models. Cygas, D. and K.D. Froehner (eds.), Selected Papers of the 8th International Conference on Environmental Engineering, Vilnius, Lithuania: Vilnius Gediminas Technical University press “Technika,” pp. 1315–1320.
  • Ellmann, A. 2005. Two deterministic and three stochastic modifications of Stokes's formula: a case study for the Baltic countries. Journal of Geodesy 79:11–23. doi:10.1007/s00190-005-0438-1
  • Ellmann, A. 2002. An improved gravity anomaly grid and a geoid model for Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 199–214.
  • Ellmann, A., T. All, and T. Oja. 2009. Towards unification of terrestrial gravity data sets in Estonia. Estonian Journal of Earth Sciences 58:229–245. doi:10.3176/earth.2009.4.02
  • Ellmann, A., T. Oja, and H. Jürgenson. 2011. Kosmosetehnoloogia rakendused geoidi ja gravitatsioonivälja täpsustamiseks Eesti alal (Application of space technologies to improve geoid and gravity field models over Estonia). Geodeet 41:22–25.
  • Ellmann, A., and P. Vaníček. 2007. UNB application of Stokes–Helmert's approach to geoid computation. Journal of Geodynamics, Potential Fields in Geostatics and Geodynamics 43:200–213. doi:10.1016/j.jog.2006.09.019
  • FAMOS Consortium. 2014. The FAMOS project. Available at http://www.famosproject.eu/famos/
  • Featherstone, W.E. 2009. Only use ship-track gravity data with caution: a case-study around Australia. Australian Journal of Earth Sciences 56:195–199. doi:10.1080/08120090802547025
  • Forsberg, R. 1997. Terrain effects in geoid determination. Sansò, F. (ed.), Lecture Notes, International School for the Determination and Use of the Geoid. Int. Geoid Service, DICA—Polytecnico di Milano. Rio de Janeiro.
  • Forsberg, R. 1991. A new high-resolution geoid of the Nordic area. Rapp, R.H., and F. Sansò (eds.), Determination of the Geoid, International Association of Geodesy Symposia. New York: Springer, pp. 241–250.
  • Forsberg, R. 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling (No. 355). Ohio State University.
  • Forsberg, R., J. Kaminskis, and D. Solheim. 1997. Geoid of the Nordic and Baltic Region from Gravimetry and Satellite Altimetry. Segawa, P.D.J., P.D.H., Fujimoto, and P.D.S. Okubo (eds.), Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia. Berlin/Heidelberg: Springer, 540–547.
  • Forsberg, R., and A.V. Olesen. 2010. Airborne gravity field determination. Xu, G. (ed.), Sciences of Geodesy I—Advances and Future Directions. Berlin/Heidelberg: Springer, 83–104.
  • Forsberg, R., and M.G. Sideris. 1993. Geoid computations by the multi-band spherical FFT approach. Manuscripta Geodaetica 18:82–90.
  • Forsberg, R., G. Strykowski, and D. Solheim. 2004. NKG-2004 Geoid of the Nordic and Baltic Area. Proceedings on CD-ROM from the International Association of Geodesy. Presented at the Gravity, Geoid and Satellite Gravity Missions, August 30–September 3, Porto, Portugal.
  • Forsberg, R., and C.C. Tscherning. 2008. An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. 2nd ed. Available at https://www.academia.edu/9206363/An_overview_manual_for_the_GRAVSOFT_Geodetic_Gravity_Field_Modelling_Programs.
  • Förste, C., S.L. Bruinsma, O. Abrikosov, J.-M. Lemoine, J.C. Marty, F. Flechtner, G. Balmino, F. Barthelmes, and R. Biancale. 2015. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse [WWW Document]. GFZ Data Services. Available at http://doi.org/10.5880/icgem.2015.1
  • Gil, A.J., and Rodríguez‐Caderot, G. 1998. Processing gravity data in the territory of Andalusia. Marine Geodesy 21:81–89. doi:10.1080/01490419809388123
  • Golden Software LLC. 2016. Surfer [WWW Document]. Available at http://www.goldensoftware.com/products/surfer. Last accessed 9.1.16.
  • Goos, J.M., W.E. Featherstone, J.F. Kirby, and S.A. Holmes. 2003. Experiments with two different approaches to gridding terrestrial gravity anomalies and their effect on regional geoid computation. Survey Review 37:92–112. doi:10.1179/sre.2003.37.288.92
  • Haagmans, R., E. de Min, and M. Gelderen. 1993. Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes' integral. Manuscripta Geodaetica 18:227–241.
  • Hackney, R.I., and W.E. Featherstone. 2003. Geodetic versus geophysical perspectives of the “gravity anomaly.” Geophysical Journal International 154:35–43. doi:10.1046/j.1365-246X.2003.01941.x
  • Häkli, P., M. Lidberg, L. Jivall, T. Nørbech, O. Tangen, M. Weber, P. Pihlak, I. Aleksejenko, and E. Paršeliunas. 2016. The NKG2008 GPS campaign—final transformation results and a new common Nordic reference frame. Journal of Geodetic Science 6:1–33. doi:10.1515/jogs-2016-0001
  • Heiskanen, W.A., and H. Moritz. 1967. Physical Geodesy. San Francisco: W. H. Freeman and Company.
  • Hinze, W., C. Aiken, J. Brozena, B. Coakley, D. Dater, G. Flanagan, R. Forsberg, T. Hildenbrand, G. Keller, J. Kellogg, R. Kucks, X. Li, A. Mainville, R. Morin, M. Pilkington, D. Plouff, D. Ravat, D. Roman, J. Urrutia-Fucugauchi, M. Véronneau, M. Webring, and D. Winester. 2005. New standards for reducing gravity data: The North American gravity database. Geophysics 70:J25–J32. doi:10.1190/1.1988183
  • Hirt, C. 2013. RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Marine Geodesy 36:183–202. doi:10.1080/01490419.2013.779334
  • Hirt, C. 2010. Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. Journal of Geodesy 84:179–190. doi:10.1007/s00190-009-0354-x
  • Hwang, C., Y.-S. Hsiao, H.-C. Shih, M. Yang, K.-H. Chen, R. Forsberg, and A.V. Olesen. 2007. Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment. Journal of Geophysical Research: Solid Earth 112. doi:10.1029/2005JB004220.
  • Isaaks, E.H., and R.M. Srivastava. 1989. Applied Geostatistics. New York, NY: Oxford University Press.
  • Janák, J., and P. Vaníček. 2005. Mean free-air gravity anomalies in the mountains. Studia Geophysica et Geodaetica 49:31–42. doi:10.1007/s11200-005-1624-6
  • Jekeli, C., H.J. Yang, and J.H. Kwon. 2009. Using gravity and topography-implied anomalies to assess data requirements for precise geoid computation. Journal of Geodesy 83:1193–1202. doi:10.1007/s00190-009-0337-y
  • Jürgenson, H. 2003. Eesti täppisgeoidi arvutus (Determination of Estonian Precision Geoid). Estonian University of Life Sciences, Tartu, Estonia.
  • Klitzke, P., J. Sippel, J.I. Faleide, and M. Scheck-Wenderoth. 2016. A 3D gravity and thermal model for the Barents Sea and Kara Sea. Tectonophysics, Special Issue on GeoMod 2014 – Modelling in Geoscience 684:131–147. doi:10.1016/j.tecto.2016.04.033
  • Korhonen, J.V., T. Koistinen, S. Elo, H. Säävuori, J. Kääriäinen, H. Nevanlinna, S. Aaro, L.Å. Haller, J.R. Skilbrei, D. Solheim, A. Chepik, A. Kulinich, L. Zhdanova, R. Vaher, T. All, and H. Sildvee. 1999. Preliminary magnetic and gravity anomaly maps of the Fennoscandian shield 1: 10 000 000. Special Paper—Geological Survey of Finland, 173–180.
  • Krige, D.G. 1951. A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand. D.G. Krige.
  • Kuhn, M., W.E. Featherstone, and J.F. Kirby. 2009. Complete spherical Bouguer gravity anomalies over Australia. Australian Journal of Earth Sciences 56:213–223. doi:10.1080/08120090802547041
  • Li, J., and M.G. Sideris. 1997. Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. Journal of Geodesy 71:209–216. doi:10.1007/s001900050088
  • Lysaker, D.I., O.C.D. Omang, B.R. Pettersen, and D. Solheim. 2007. Quasigeoid evaluation with improved levelled height data for Norway. Journal of Geodesy 81:617–627. doi:10.1007/s00190-006-0129-6
  • Mandal, A., S. Gupta, W.K. Mohanty, and S. Misra. 2015. Sub-surface structure of a craton–mobile belt interface: Evidence from geological and gravity studies across the Rengali Province–Eastern Ghats Belt boundary, eastern India. Tectonophysics, Special issue on Comparative tectonic and dynamic analysis of cratons, orogens, basins, and metallogeny 662:140–152. doi:10.1016/j.tecto.2015.01.016
  • Märdla, S., A. Ellmann, T. Oja, and H. Jürgenson. 2015. Improving and validating gravity data over ice-covered marine areas. Rizos, C., and P. Willis (Eds.), IAG 150 Years: Proceedings of the 2013 IAG Scientific Assembly, Postdam, Germany, 1–6 September, 2013, International Association of Geodesy Symposia. Springer International Publishing, 263–270.
  • Martín, A., A.B. Anquela, J. Padín, and S. Baselga. 2009. Some notes and numerical comparisons on gravity anomalies interpolation. Survey Review 41:201–215.
  • Martinec, Z. 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid, Lecture Notes in Earth Sciences. Berlin/Heidelberg: Springer-Verlag.
  • Morelli, C., C. Gantar, T. Honkasalo, R.K. McConnell, T.G. Tanner, B. Szabo, U. Uotila, and C.T. Whalen. 1971. The international gravity standardisation network (IGSN71). Bulletin Géodésique, Special Publication No. 4.
  • Moritz, H. 2000. Geodetic reference system 1980. Journal of Geodesy 74:128–133. doi:10.1007/s001900050278
  • Moritz, H. 1980. Advanced Physical Geodesy. Wichmann. Tunbridge Wells, UK: Abacus Press.
  • Nahavandchi, H., A. Soltanpour, and E. Nymes. 2005. A new gravimetric geoidal height model over norway computed by the least-squares modification parameters. Jekeli, P.C., D.L. Bastos, and P.J. Fernandes (eds.), IAG International Symposium on Gravity, Geoid and Space Missions: GGSM, Porto, Portugal, August 30–September 3, 2004, International Association of Geodesy Symposia. Berlin/Heidelberg: Springer, 191–196.
  • Niebauer, T.M., G.S. Sasagawa, J.E. Faller, R. Hilt, and F. Klopping. 1995. A new generation of absolute gravimeters. Metrologia 32:159. doi:10.1088/0026-1394/32/3/004
  • Noréus, J.P., M.R. Nyborg, and K.L. Hayling. 1997. The gravity anomaly field in the Gulf of Bothnia spatially characterized from satellite altimetry and in situ measurements. Journal of Applied Geophysics 37:67–84. doi:10.1016/S0926-9851(97)00007-4
  • Novák, P., P. Vaníček, Z. Martinec, and M. Véronneau. 2001. Effects of the spherical terrain on gravity and the geoid. Journal of Geodesy 75:491–504. doi:10.1007/s001900100201
  • Omang, O.C., C.C. Tscherning, and R. Forsberg. 2012. Generalizing the harmonic reduction procedure in residual topographic modeling. Sneeuw, N., P. Novák, M. Crespi, and F. Sansò (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia. Berlin/Heidelberg: Springer, 233–238.
  • Omang, O.C.D., and R. Forsberg. 2002. The northern European geoid: a case study on long-wavelength geoid errors. Journal of Geodesy 76:369–380. doi:10.1007/s00190-002-0261-x
  • Omang, O.C.D., and R. Forsberg. 2000. How to handle topography in practical geoid determination: three examples. Journal of Geodesy 74:458–466.
  • Radhakrishna, M., S. Lasitha, and M. Mukhopadhyay. 2008. Seismicity, gravity anomalies and lithospheric structure of the Andaman arc, NE Indian Ocean. Tectonophysics 460:248–262. doi:10.1016/j.tecto.2008.08.021
  • Renka, R.J. 1997a. Algorithm 772: STRIPACK: Delaunay Triangulation and voronoi diagram on the surface of a sphere. ACM Transactions on Mathematical Software 23:416–434. doi:10.1145/275323.275329
  • Renka, R.J. 1997b. Algorithm 773: SSRFPACK: Interpolation of Scattered data on the surface of a sphere with a surface under tension. ACM Transactions on Mathematical Software 23:435–442. doi:10.1145/275323.275330
  • Saleh, J., X. Li, Y.M. Wang, D.R. Roman, and D.A. Smith. 2013. Error analysis of the NGS' surface gravity database. Journal of Geodesy 87:203–221. doi:10.1007/s00190-012-0589-9
  • Sansò, F., M.G. Sideris (Eds.). 2013. Geoid Determination, Lecture Notes in Earth System Sciences. Berlin/Heidelberg: Springer.
  • Sjöberg, L.E. 2003. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. Journal of Geodesy 77:423–432. doi:10.1007/s00190-003-0338-1
  • Sjöberg, L.E. 2000. Topographic effects by the Stokes–Helmert method of geoid and quasi-geoid determinations. Journal of Geodesy 74:255–268. doi:10.1007/s001900050284
  • Sjöberg, L.E. 1991. Refined least squares modification of stokes formula. Manuscripta Geodaetica 16:367–375.
  • Sjöberg, L.E. 1984. Least squares modification of Stokes' and Vening Meinesz’ formulas by accounting for truncation and potential coefficient errors. Manuscripta Geodaetica 9:209–229.
  • Smith, W.H.F., and P. Wessel. 1990. Gridding with continuous curvature splines in tension. Geophysics 55:293–305. doi:10.1190/1.1442837
  • Stokes, G.G. 1849. On the Variation of Gravity at the Surface of the EARTH. Trans. Cambridge Philos. Soc. VIIII, 672–695.
  • Sünkel, H. 1986. Global topographic-isostatic models. Sünkel, H. (ed.), Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences. Berlin/Heidelberg: Springer, 417–462. doi:10.1007/BFb0010137
  • Tscherning, C.C. 1985. Local approximation of the gravity potential by least squares collocation. Schwarz, K.P. (ed.), Proceedings of the International Summer School on Local Gravity Field Approximation, Beijing, China, August 21–September 4, 1984. Calgary, Canada: University of Calgary, 277–362.
  • Tscherning, C.C., and R. Forsberg. 1986. Geoid determination in the Nordic countries from gravity and height data, in: Bolletino Di Geodesia E Scienze Affini. Presented at the International Symposium on the Definition of the Geoid, Florence, Italy, 21–43.
  • Tscherning, C.C., F. Rubek, and R. Forsberg. 1998. Combining airborne and ground gravity using collocation. Forsberg, P.D.R., P.D.M. Feissel, and P.D.R. Dietrich (eds.), Geodesy on the Move - Gravity, Geoid, Geodynamics and Antarctica: Proceedings of lAG Scientific Assembly, Rio de Janeiro, Brazil, September 3–9, 1997, International Association of Geodesy Symposia. Berlin/Heidelberg: Springer, 18–23. doi:10.1007/978-3-642-72245-5_3
  • Vaníček, P., P. Novák, and Z. Martinec. 2001. Geoid, topography, and the Bouguer plate or shell. Journal of Geodesy 75:210–215. doi:10.1007/s001900100165
  • Vaníček, P., and L.E. Sjöberg. 1991. Reformulation of Stokes's theory for higher than second-degree reference field and modification of integration kernels. Journal of Geophysical Research 96:6529–6539. doi:10.1029/90JB02782
  • Vaníček, P., R. Tenzer, L.E. Sjöberg, Z. Martinec, and W.E. Featherstone. 2004. New views of the spherical Bouguer gravity anomaly. Geophysical Journal International 159:460–472. doi:10.1111/j.1365-246X.2004.02435.x
  • Vergos, G.S., I.N. Tziavos, and V.D. Andritsanos. 2005. Gravity data base generation and geoid model estimation using heterogeneous data. Gravity, Geoid and Space Missions. Berlin/Heidelberg: Springer, 155–160.
  • Vermeer, M. 1994. A Fast Delivery GPS-Gravimetric Geoid for Estonia (No. 94:1). Reports of the Finnish Geodetic Institute. Finnish Geodetic Institute, Masala, Finland.
  • Véronneau, M. 2013. The Helmert Gravity Grid Used for CGG2010. Geodetic Survey Division, Natural Resources Canada, Ottawa, Canada ( via pers. comm., 28.04.2016).
  • Wang, Y.M., J. Saleh, X. Li, and D.R. Roman. 2012. The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation. Journal of Geodesy 86:165–180. doi:10.1007/s00190-011-0506-7
  • Wessel, P., W.H.F. Smith, R. Scharroo, J. Luis, and F. Wobbe. 2013. Generic mapping tools: improved version released. Eos Transactions American Geophysical Union 94:409–410. doi:10.1002/2013EO450001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.