421
Views
26
CrossRef citations to date
0
Altmetric
Articles

Comparison of Satellite Altimetric Gravity and Global Geopotential Models with Shipborne Gravity in the Red Sea

, , , &
Pages 258-269 | Received 16 Aug 2017, Accepted 29 Nov 2017, Published online: 21 Feb 2018

References

  • Adam, D. 2002. Gravity measurement: Amazing GRACE. Nature 416 (6876):10–11. doi:10.1038/416010a.
  • Alexander, N. M., A. M. Dmitriy, and N. L. Alexander. 2016. Gravity field models derived from the second-degree radial derivatives of the GOCE mission: A case study. Annals of Geophysics 59 (6):doi:10.4401/ag-7049.
  • Andersen, O. B., P. Knudsen, P. Berry, N. Pavlis, and S. Kenyon. 2008. The DNSC07 A ocean-wide altimetry-derived gravity field. Vienna, Austria: EGU Proceedings, General Assembly, April 14–18.
  • Andersen, O., P. Knudsen, and L. Stenseng. 2014. The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry. In: IGFS 2014: Proceedings of the 3rd International Gravity Field Service (IGFS), ed. S. Jin, R. Barzaghi, S. Jin, and R. Barzaghi, vol. 144, 111–121. Shanghai, China: Springer, Cham.
  • Arlot, S., and A. Celisse. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys 4:40–79. doi:10.1214/09-SS054.
  • Bettadpur, S., J. Ries, R. Eanes, P. Nagel, N. Pie, S. Poole, T. Richter, and H. Save. 2015. Evaluation of the GGM05 Mean Earth Gravity models. EGU General Assembly Conference Abstracts, 17.
  • Brockmann, J. M., N. Zehentner, E. Höck, R. Pail, I. Loth, T. Mayer-Gürr, and W.-D. Schuh. 2014. EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. GeoPhysical Research Letters 41 (22):8089–8099, doi:10.1002/2014GL061904.
  • Bruinsma, S. L., C. Förste, O. Abrikosov, J.-C. Marty, M.-H. Rio, S. Mulet, and S. Bonvalot. 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters 40 (14):1944–8007, doi:10.1002/grl.50716.
  • Capponi, M., A. H. Mansi, and D. Sampietro. 2017. Improving the computation of the gravitational terrain effect close to ground stations in the GTE software. Studia Geophysica et Geodaetica. doi:10.1007/s11200-017-0814-3.
  • Dahle, C., F. Flechtner, C. Gruber, D. König, R. König, G. Michalak, and K.-H. Neumayer. 2013. GFZ GRACE Level-2 processing standards document for level-2 product release 0005: Revised edition. Potsdam: Potsdam: Deutsches GeoForschungsZentrum GFZ, doi:10.2312/GFZ.b103-1202-25.
  • Denker, H., and M. Roland. 2005. Compilation and evaluation of a consistent marine gravity data set surrounding Europe. In: A window on the future of geodesy: Proceedings of the international association of geodesy IAG general assembly sapporo, Japan June 30–July 11, 2003, ed. F. Sansò, 248–253. Berlin, Heidelberg: Springer Berlin Heidelberg, doi:10.1007/3-540-27432-4_42.
  • Drinkwater, M. R., R. Floberghagen, R. Haagmans, D. Muzi, and A. Popescu. 2003. GOCE: ESA's first Earth explorer core mission. In: Earth gravity field from space – from sensors to earth sciences: Proceedings of an ISSI Workshop 11–15 March: 2002, ed. G. Beutler, M. R. Drinkwater, R. Rummel, and R. Von Steiger, 419–432. Bern, Switzerland: Springer Netherlands, doi:10.1007/978-94-017-1333-7_36.
  • European GOCE Gravity-Consortium. 2010. GOCE level 2 product data handbook. GO-MA-HPF-GS-0110, Issue 4.2. Noordwijk: European Space Agency. Retrieved from http://earth.esa.int/pub/ESA_DOC/GOCE/Product_Data_Handbook_4.1.pdf
  • Featherstone, W., and D. Sproule. 2006. Fitting AUSGeoid98 to the Australian Height Datum using GPS data and least squares collocation: Application of a cross-validation technique. Survey Review 38 (301):573–582, doi:10.1179/sre.2006.38.301.573.
  • Fecher, T., R. Pail, and T. Gruber. 2016. The combined gravity field model GOCO05 c. EGU General Assembly Conference Abstracts. 18, 7696. Vienna, Austria: EGU. Retrieved from http://adsabs.harvard.edu/abs/2016EGUGA..18.7696F.
  • Forsberg, R. 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Columbus, Ohio: Ohio State University, Department of Geodetic Science and Surveying. Retrieved from http://www.dtic.mil/docs/citations/ADA150788.
  • Forsberg, R. 1985. Gravity field terrain effect computations by FFT. Bulletin Géodésique 59 (4):342–360, doi:10.1007/BF02521068. doi:10.1007/BF02521068.
  • Forsberg, R., and C. C. Tscherning. 1981. The use of height data in gravity field approximation by collocation. Journal of Geophysical Research: Solid Earth 86 (B9):7843–7854, doi:10.1029/JB086iB09p07843.
  • Forsberg, R., and C. C. Tscherning. 2008. An overview manual for the GRAVSOFT geodetic gravity field modelling programs. DRAFT 1 ed. Copenhagen: Contract report for JUPEM.
  • Förste, C., S. L. Bruinsma, O. Abrikosov, J-M. Lemoine, J. C. Marty, F. Flechtner, G. Balmino, F. Barthelmes, and R. Biancale. 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. presented at the 5th GOCE User Workshop.
  • Gatti, A., M. Reguzzoni, F. Migliaccio, and F. Sansò. 2014. Space-wise grids of gravity gradients from GOCE data at nominal satellite altitude. 5th International GOCE User Workshop (pp. 25–28). Paris, France: UNESCO.
  • Gilardoni, M., M. Reguzzoni, and D. Sampietro. 2016. GECO: A global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica 60 (2):228–247, doi:10.1007/s11200-015-1114-4.
  • Hirt, C., W. E. Featherstone, and U. Marti. 2010. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. Journal of Geodesy 84 (9):557–567, doi:10.1007/s00190-010-0395-1.
  • Hirt, C., T. Gruber, and W. E. Featherstone. 2011. Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. Journal of Geodesy 85 (10):723–740, doi:10.1007/s00190-011-0482-y.
  • Kiamehr, R. 2007. Qualification and refinement of the gravity database based on cross-validation approach – A case study of Iran. Acta Geodaetica et Geophysica Hungarica 42 (3):285–295. doi:10.1556/AGeod.42.2007.3.3.
  • Lequentrec-Lalancette, M., C. Salaűn, S. Bonvalot, D. Rouxel, and S. Bruinsma. 2016. Exploitation of Marine Gravity Measurements of the Mediterranean in the Validation of Global Gravity Field Models. In: International association of geodesy symposia, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/1345_2016_258.
  • Matheron, G. 1963. Principles of geostatistics. Economic Geology 58 (8):1246–1266. doi:10.2113/gsecongeo.58.8.1246.
  • Moritz, H. 1980. Advanced physical geodesy. Tunbridge, England: Karlsruhe: Wichmann.
  • Pail, R., T. Fecher, D. Barnes, J. Factor, S. Holmes, T. Gruber, and P. Zingerle. 2016. The Experimental Gravity Field Model XGM2016. International Symposium on Gravity, Geoid and Height System. Thessaloniki, Greece: Presentation at International Symposium on Gravity, Geoid and Height System 2016.
  • Pavlis, N. K., S. A. Holmes, and S. C. Kenyon. 2008. An earth gravitational model to degree 2160: EGM2008, presented at the 2008 General Assembly of the European Geosciences Union.
  • Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth 117 (B4):2156–2202, doi:10.1029/2011JB008916.
  • Pavlis, N., J. Factor, and S. Holmes. 2007. Terrain-related gravimetric quantities computed for the next EGM. The 1st international symposium of the international gravity field service. 18, pp. 318–323. Istanbul, Turkey: Proceedings of the 1st International Symposium of the International Gravity Field Service. Retrieved from http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/NPavlis&al_S8_Revised111606.pdf.
  • Pearlman, M. R., J. J. Degnan, and J. M. Bosworth. 2002. The international laser ranging service. Advances in Space Research 30 (2):135–143. doi:10.1016/S0273-1177(02)00277-6.
  • Rasul, N. M., C. I. Stewart, and Z. A. Nawab. 2015. Introduction to the red sea: Its origin, structure, and environment. In: The red sea: The formation, morphology, oceanography and environment of a young ocean basin, ed. N. M. Rasul, & I. C. Stewart, 1–28. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-45201-1_1.
  • Reigber, C., H. Lühr, and P. Schwintzer. 1999. The CHAMP geopotential mission. Bollettino di Geofisica Teorica ed Applicata 40 (3–4):285–289. Retrieved from http://www3.ogs.trieste.it/bgta/pdf/bgta40.3.4_REIGBER1.pdf
  • Sampietro, D., M. Capponi, A. H. Mansi, A. Gatti, P. Marchetti, and F. Sansò. 2017. Space-Wise approach for airborne gravity data modelling. Journal of Geodesy 91 (5):535–545. doi:10.1007/s00190-016-0981-y.
  • Sampietro, D., M. Capponi, D. Triglione, A. H. Mansi, P. Marchetti, and F. Sansò. 2016. GTE: A new software for gravitational terrain effect computation. Theory and Performances. Pure and Applied Geophysics 173 (7):2435–2453. doi:10.1007/s00024-016-1265-4.
  • Sandwell, D., E. Garcia, K. Soofi, P. Wessel, M. Chandler, and W. Smith. 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge 32 (8):892–899. doi:10.1190/tle32080892.1.
  • Sandwell, D., R. Müller, W. Smith, E. Garcia, and R. Francis. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346 (6205):65–67. doi:10.1126/science.1258213.
  • Strykowski, G., and R. Forsberg. 1998. Operational merging of satellite, airborne and surface gravity data by draping techniques. In: Geodesy on the move: Gravity, geoid, geodynamics and antarctica, ed. R. Forsberg, M. Feissel, and R. Dietrich, 243–248. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-72245-5_35.
  • Tapley, B. D., B. E. Schutz, R. J. Eanes, J. C. Ries, and M. M. Watkins. 2013. Lageos laser ranging contributions to geodynamics, geodesy, and orbital dynamics. In: Contributions of space geodesy to geodynamics: Earth dynamics, ed, D. E. Smith, and D. L. Turcotte, 147–173. Washington, D. C.: American Geophysical Union. doi:10.1029/GD024p0147.
  • Tscherning, C. C. 1991. A strategy for Gross-Error detection in satellite altimeter data applied in the Baltic-Sea area for enhanced geoid and gravity determination. In: Determination of the geoid: Present and future, R. H. Rapp, F. Sansò, R. H. Rapp, and F. Sansò, 95–107. New York, NY, USA: Springer New York, doi:10.1007/978-1-4612-3104-2_12.
  • USGS. 2017. Shuttle Radar Topography mission, https://earthexplorer.usgs.gov.
  • Vapnik, V., and O. Chapelle. 2000. Bounds on error expectation for support vector machines. Neural Computation 12 (9):2013–2036. doi:10.1162/089976600300015042.
  • Wackernagel, H. 2013. Multivariable geostatistics: an introduction with applications. Berlin HeidelBerg: Springer Berlin Heidelberg. Retrieved from https://books.google.it/books?id=vM3sCAAAQBAJ.
  • Wessel, P., and A. B. Watts. 1988. On the accuracy of marine gravity measurements. Journal of GeOphysical Research: Solid Earth 93 (B1):393–413. doi:10.1029/JB093iB01p00393.
  • Yoder, C. F., J. G. Williams, J. O. Dickey, B. E. Schutz, R. J. Eanes, and B. D. Tapley. 1983. Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature 303:757–762. doi:10.1038/303757a0.
  • Zhang, S., D. T. Sandwell, T. Jin, and D. Li. 2017. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. Journal of Applied Geophysics 137:128–137. doi:10.1016/j.jappgeo.2016.12.014.
  • Zlotnicki, V. 1984. On the accuracy of gravimetric geoids and the recovery of oceanographic signals from altimetry. Marine Geodesy 8 (1–4):129–157. doi:10.1080/15210608409379500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.