308
Views
4
CrossRef citations to date
0
Altmetric
Articles

Shallow Water Bathymetry Derived from Green Wavelength Terrestrial Laser Scanner

, , &
Pages 472-492 | Received 22 Sep 2019, Accepted 28 Feb 2020, Published online: 18 Mar 2020

References

  • Alho, P., A. Kukko, H. Hyyppä, H. Kaartinen, J. Hyyppä, and A. Jaakkola. 2009. Application of boat‐based laser scanning for river survey. Earth Surface Processes and Landforms 34 (13):1831–8.
  • Almeida, L. P., G. Masselink, P. Russell, and M. Davidson. 2015. Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology 228:15–27.
  • Andriolo, U., L. P. Almeida, and R. Almar. 2018. Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography. Coastal Engineering 140:232–9.
  • Barber, D. M., and J. P. Mills. 2007. Vehicle based waveform laser scanning in a coastal environment. In Proceedings of the 5th International Symposium on Mobile Mapping Technology, Padua, Italy, 29–31 May 2007, Volume 36, C55.
  • Blenkinsopp, C. E., M. A. Mole, I. L. Turner, and W. L. Peirson. 2010. Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR. Coastal Engineering 57 (11–12):1059–65.
  • Blenkinshopp, C. E., I. L. Tunrner, M. J. Allid, W. L. Peirson, and L. E. Garden. 2012. Application of LiDAR technology for measurement of time-varying free-surface profiles in a laboratory wave flume. Coastal Engineering 68:1–5.
  • Brodie, K. L., R. K. Slocum, and J. E. McNinch. 2012. New insights into the physical drivers of wave runup from a continuously operating terrestrial laser scanner. Oceans 2012:1–8.
  • Butler, J., S. Lane, J. Chandler, and E. Porfiri. 2002. Through-water close range digital photogrammetry in flume and field environments. The Photogrammetric Record 17 (99):419–39.
  • Daimon, M., and A. Masumura. 2007. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Applied Optics 46 (18):3811–20.
  • Damveld, J. H., K. J. van der Reijden, C. Cheng, L. Koop, L. R. Haaksma, C. A. J. Walsh, K. Soetaert, B. W. Borsje, L. L. Govers, P. C. Roos, et al. 2018. Video transects reveal that tidal sand waves affect the spatial distribution of benthic organisms and sand ripples. Geophysical Research Letters 45 (21):11837–46.
  • Deruyter, G., M. Vanhaelst, C. Stal, H. Glas, and A. De Wulf. 2015. The use of terrestrial laser scanning for measurements in shallow-water: Correction of the 3D coordinates of the point cloud. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference (SGEM 2015), Albena (Bulgaria), 16–25 June 2015, 1203–10.
  • Friedl, F., J. Schneider, F. Hinkelammert, and V. Weitbrecht. 2018. Through-water terrestrial laser scanning in hydraulic scale models: Proof of concept. Journal of Hydraulic Research 56 (4):551–9.
  • Harry, M., H. Zhang, and G. Colleter. 2012. Remotely sensed data for wave profile analysis. In Proceedings of the Coastal Engineering Conference 110.
  • Harry, M., H. Zhang, C. Lemckert, G. Colleter, and C. Blenkinsopp. 2018. Observation of surf zone wave transformation using LiDAR. Applied Ocean Research 78:88–98.
  • Heritage, G. L., and D. J. Milan. 2009. Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology 113 (1–2):4–11.
  • Klopfer, F., M. Hämmerle, and B. Höfle. 2017. Assessing the potential of a low-cost 3-D sensor in shallow-water bathymetry. IEEE Geoscience and Remote Sensing Letters 14 (8):1388–92.
  • Lichti, D. D., S. J. Gordon, and M. P. Stewart. 2002. Ground-based laser scanners: Operation, systems and applications. Geomatica 56:21–33.
  • Kaasalainen, S., H. Kaartinen, A. Kukko, K. Anttila, and A. Krooks. 2011. Brief communication: Application of mobile laser scanning in snow cover profiling. Cryosphere Discussions. 5 (1):135–8.
  • Mandlburger, G., M. Pfennigbauer, M. Wieser, U. Riegl, and N. Pfeifer. 2016. Evaluation of a novel UAV-borne topo-bathymetric laser profiler. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1:933–9.
  • Martins, K., C. Blenkinsopp, R. Deigaard, and H. Power. 2018. Energy dissipation in the inner surf zon: New insights from LiDAR-based roller geometry measurements. Journal of Geophysical Research: Oceans 123:3386–407.
  • Martins, K., C. Blenkinsopp, H. Power, B. Bruder, J. Puleo, and E. Bergsma. 2017. High-resolution monitoring of wave transformation in the surf zone using a LiDAR scanner array. Coastal Engineering 128:37–43.
  • Milan, D., G. Heritage, A. R. G. Large, and N. Entwistle. 2010. Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties. Earth Surface Processes and Landforms 35 (8):918–31.
  • Miliaresis, G., and C. Paraschou. 2005. Vertical accuracy of the SRTM DTED Level 1 of Crete. International Journal of Applied Earth Observation and Geoinformation 7:49–59.
  • Miura, N., and Y. Asano. 2013. Green-wavelength terrestrial laser scanning of mountain channel. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W2:187–92.
  • Morgan, J. A., D. J. Brogan, and P. A. Nelson. 2017. Application of structure-from-motion photogrammetry in laboratory flumes. Geomorphology 276:125–43.
  • Nelson, T., and G. Voulgaris. 2015. A spectral model for estimating temporal and spatial evolution of rippled seabeds. Ocean Dynamics 65 (2):155–71.
  • Pacheco, A., J. Horta, C. Loureiro, and O. Ferreira. 2015. Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sensing of Environment 159:102–16.
  • Pastol, Y. 2011. Use of airborne LIDAR bathymetry for coastal hydrographic surveying: The French experience. Journal of Coastal Research 62:6–18.
  • Penko, A., J. Calantoni, and B. Hefner. 2017. Modelling and observations of sand ripple formation and evolution during TREX13. IEEE Journal of Oceanic Engineering 42 (2):260–7.
  • Quadros, N. D., P. A. Collier, and C. S. Fraser. 2008. Integration of bathymetric and topographic LIDAR: A preliminary investigation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37:1299–304.
  • Serantoni, E., A. Wieser, and L. Olgiati. 2015. Terrestrische laser-bathymetrie mit MS50. Geomatik Schweiz: Geoinformation und Landmanagement 10:403–6.
  • Smith, M., D. Vericat, and C. Gibbins. 2012. Through-water terrestrial laser scanning of gravel beds at the plot scale. Earth Surface Processes and Landforms 37 (4):411–21.
  • Smith, M. W., and D. Vericat. 2014. Evaluating shallow-water bathymetry from through-water terrestrial laser scanning under a range of hydraulic and physical water quality conditions. River Research and Applications 30 (7):905–24.
  • Soukissian, Τ., M. Hatzinaki, G. Korres, A. Papadopoulos, G. Kallos, and E. Anadranistakis. 2007. Wind and Wave Atlas of the Hellenic Seas, 300. Greece: Hellenic Centre for Marine Research Publ.
  • Streicher, M., B. Hofland, and R. Lindenbergh. 2013. Laser ranging for monitoring water waves in the new Deltares Delta Flume. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W2:271–6.
  • Vaaja, M., A. Kukko, H. Kaartinen, M. Kurkela, E. Kasvi, C. Flener, H. Hyyppä, J. Hyyppä, J. Järvelä, and P. P. Alho. 2013. Data processing and quality evaluation of a boat-based mobile laser scanning system. Sensors 13 (9):12497–515.
  • Vousdoukas, M. I., T. Kirupakaramoorthy, M. de la Torre, F. Wübbold, W. Wagner, S. Schimmels, and H. Oumeraci. 2014. The role of combined laser scanning and video techniques in monitoring wave-by-wave swash zone processes. Coastal Engineering 83:150–65.
  • Water, K. 2013. Bathy Lidar: Harder than it looks. https://geozoneblog.wordpress.com/2013/09/25/bathy-lidar-harder-than-it-looks/.
  • Wozencraft, J. M., and D. Millar. 2005. Airborne LIDAR and integrated technologies for coastal mapping and nautical charting. Marine Technology Society Journal 39 (3):27–35.
  • Wu, C.-T., M.-C. Chen, and C.-Y. Hsiao. 2014. Scanning near-shore intertidal terrain using ground LiDAR. Journal of Chinese Soil and Water Conservation 45:49–56.
  • Xiaoye, L. 2008. Airborne LiDAR for DEM generation: Some critical issues. Progress in Physical Geography: Earth and Environment 32:31–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.