135
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A Robust Method to Estimate the Coordinates of Seafloor Stations by Direct-Path Ranging

ORCID Icon, &
Pages 83-98 | Received 25 Apr 2021, Accepted 08 Aug 2022, Published online: 24 Aug 2022

References

  • Blum, J. A., C. D. Chadwell, N. Driscoll, and M. A. Zumberge. 2010. Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and chirp seismic data. Geophysical Research Letters 37 (13):n/a–454. https://doi.org/10.1029/2010GL043293.
  • Bürgmann, R., and D. Chadwell. 2014. Seafloor geodesy. Annual Review of Earth and Planetary Sciences 42 (1):509–34. https://doi.org/10.1146/annurev-earth-060313-054953.
  • Chadwell, C. D., J. A. Hildebrand, F. N. Spiess, J. L. Morton, W. R. Normark, and C. A. Reiss. 1999. No spreading across the southern Juan de Fuca ridge axial cleft during 1994–1996. Geophysical Research Letters 26 (16):2525–8. https://doi.org/10.1029/1999GL900570.
  • Fujimoto, H., K. Koizumi, Y. Osada, and T. Kanazawa. 1998. Development of instruments for seafloor geodesy. Earth, Planets and Space 50 (11–12):905–11. https://doi.org/10.1186/BF03352186.
  • Fujita, M., T. Ishikawa, M. Mochizuki, M. Sato, S-i Toyama, M. Katayama, K. Kawai, Y. Matsumoto, T. Yabuki, A. Asada, et al. 2006. GPS/Acoustic seafloor geodetic observation: Method of data analysis and its application. Earth, Planets and Space 58 (3):265–75. https://doi.org/10.1186/BF03351923.
  • Hu, M. 2003. The theory and the application of contemporary geodesy. Beijing: Surveying and Mapping Press. (in Chinese)
  • Kido, M., Y. Osada, and H. Fujimoto. 2008. Temporal variation of sound velocity in ocean: A comparison between GPS/acoustic and in situ measurements. Earth, Planets and Space 60 (3):229–34. https://doi.org/10.1186/BF03352785.
  • Kinugasa, N., K. Tadokoro, T. Kato, and Y. Terada. 2020. Estimation of temporal and spatial variation of sound velocity in ocean from GNSS-A measurements for observation using moored buoy. Progress in Earth and Planetary Science 7 (1):21. https://doi.org/10.1186/s40645-020-00331-5.
  • Liu, J., G. Chen, J. Zhao, K. Gao, and Y. Liu. 2019. Development and trends of marine space-time frame network. Geomatics and Information Science of Wuhan University 44 (1):17–37. (in Chinese) https://doi.org/10.13203/j.whugis20180340.
  • Mcguire, J. J., and J. A. Collins. 2013. Millimeter-level precision in a seafloor geodesy experiment at the discovery transform fault, east pacific rise. Geochemistry, Geophysics, Geosystems 14 (10):4392–402. https://doi.org/10.1002/ggge.20225.
  • Osada, Y., M. Kido, and H. Fujimoto. 2012. A long-term seafloor experiment using an acoustic ranging system: Precise horizontal distance measurements for detection of seafloor crustal deformation. Ocean Engineering 51:28–33. https://doi.org/10.1016/j.oceaneng.2012.05.006.
  • Osada, Y., M. Kido, H. Fujimoto, and Y. Kaneda. 2008. Development of a seafloor acoustic ranging system toward the seafloor cable network system. Ocean Engineering 35 (14–15):1401–5. https://doi.org/10.1016/j.oceaneng.2008.07.007.
  • Sakic, P., H. Piété, V. Ballu, J.-Y. Royer, H. Kopp, D. Lange, F. Petersen, M. S. Özeren, S. Ergintav, L. Geli, et al. 2016. No significant steady state surface creep along the North Anatolian Fault offshore Istanbul: Results of 6 months of seafloor acoustic ranging. Geophysical Research Letters 43 (13):6817–25. https://doi.org/10.1002/2016GL069600.
  • Spiess F. N. (1985) Suboceanic geodetic measurements.IEEE Transactions on Geoscience and Remote Sensing, GE-23(4): 502–510. https://doi.org/10.1109/TGRS.1985.289441
  • Tomita F., M. Kido, C. Honsho, and R. Matsui. 2019. Development of a kinematic GNSS-acoustic positioning method based on a state-space model. Earth Planets Space 71:102. https://doi.org/10.1186/s40623-019-1082-y
  • Wang, J., T. H. Xu, W. Nie, and X. Yu. 2020a. The Construction of sound speed field based on back propagation neural network in the global ocean. Marine Geodesy 43 (6):621–42. https://doi.org/10.1080/01490419.2020.1815912.
  • Wang, J., T. H. Xu, B. Zhang, and W. Nie. 2020b. Underwater acoustic positioning based on the robust zerodifference Kalman filter. Journal of Marine Science and Technology 26 (3):734–49. https://doi.org/10.1007/s00773-020-00766-x.
  • Xin, M., M. Ge, F. Yang, Y. Liu, L. Bao, B. Shi, and Y. Luo. 2022. A sound ray tracing positioning method for marine geodetic datum considering the effect of transceiver separation. Chinese Journal of Geophysics
  • Xin, M., F. Yang, S. Xue, Z. Wang, and Y. Han. 2020. A constant gradient sound ray tracing underwater positioning algorithm considering incident beam angle. Acta Geodaetica et Cartographica Sinica 49 (12):1535–42.
  • Xu, P., M. Ando, and K. Tadokoro. 2005. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques. Earth, Planets and Space 57 (9):795–808. https://doi.org/10.1186/BF03351859.
  • Yamada, T., M. Ando, K. Tadokoro, K. Sato, T. Okuda, and K. Oike. 2002. Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements. Earth, Planets and Space 54 (9):871–81. https://doi.org/10.1186/BF03352435.
  • Yang, Y., Y. Liu, D. Sun, T. Xu, S. Xue, Y. Han, and A. Zeng. 2020. Seafloor geodetic network establishment and key technologies. Science China Earth Sciences 63 (8):1188–98. https://doi.org/10.1007/s11430-019-9602-3.
  • Yang, F. L., X. S. Lu, J. B. Li, L. T. Han, and Z. Y. Zheng. 2011. Precise positioning of underwater static objects without sound speed profile. Marine Geodesy 34 (2):138–51. http://dx.doi.org/10.1080/01490419.2010.518501.
  • Yang, Y., and X. Qin. 2021. Resilient observation models for seafloor geodetic positioning. Journal of Geodesy 95 (7):1–13. https://doi.org/10.1007/s00190-021-01531-7.
  • Yang, Y., T. Xu, and S. Xue. 2018. Progresses and prospects in developing marine geodetic datum and marine navigation of China. Journal of Geodesy and Geoinformation Science 1 (1):16–24. https://doi.org/10.11947/j.AGCS.20180103.
  • Zhao, J., X. Chen, H. Zhang, and J. Feng. 2018. Localization of an underwater control network based on quasi-stable adjustment. Sensors 18 (4):950. https://doi.org/10.3390/s18040950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.