1,122
Views
134
CrossRef citations to date
0
Altmetric
Original Articles

Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(II)-Oxidizing Bacteria

, , , , , & show all
Pages 93-103 | Received 17 Sep 2009, Accepted 29 Oct 2009, Published online: 19 Feb 2009

REFERENCES

  • Benzerara , K , Menguy , N , Guyot , F , Skouri , F , de Lucca , G and Heulin , T . 2004a . Bacteria-controlled precipitation of calcium phosphate by R. tataouinensis . Earth Planet Sci Lett , 228 : 439 – 449 .
  • Benzerara , K , Yoon , T H , Tyliszczak , T , Constantz , B , Spormann , A M and Brown , G E . 2004b . Scanning transmission X-ray microscopy study of microbial calcification . Geobiology , 2 : 249 – 259 .
  • Bernard , S , Benzerara , K , Beyssac , O , Menguy , N , Guyot , F , Brown , G E and Goffé , B . 2007 . Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks . Earth Planet Sci Lett , 262 ( 1–2 ) : 257 – 272 .
  • Blake , R , Shute , E A , Waskovsky , J and Harrison , A P . 1992 . Respiratory components in acidophilic bacteria that respire on iron . Geomicrobiol J , 10 ( 3–4 ) : 173 – 192 .
  • Buresh , R J and Moraghan , J T . 1976 . Chemical reduction of nitrate by ferrous iron . J Environ Qual , 5 : 320 – 325 .
  • Canfield , D E . 1989 . Reactive iron in marine sediments . Geochim Cosmochim Acta , 53 : 619 – 458 .
  • Chan , C S , De Stasio , G , Welch , S A , Girasole , M , Frazer , B H , Nesterova , M V , Fakra , S and Banfield , J F . 2004 . Microbial polysaccharides template assembly of nanocrystal fibers . Science , 303 : 1656 – 1658 .
  • Cornell , R M and Schwertmann , U . 2003 . The iron oxides: structure, properties, reactions, occurrences and uses: Weinheim , Vol. xxxi , 573 Cambridge : VCH .
  • Croal , L F , Johnson , C M , Beard , B L and Newman , D K . 2004 . Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria . Geochim Cosmochim Acta , 68 ( 6 ) : 1227 – 1242 .
  • Croal , L F , Jiao , Y and Newman , D K . 2007 . The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003 . J Bacteriol , 189 ( 5 ) : 1774 – 1782 .
  • Ehrenreich , A and Widdel , F . 1994 . Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic mechanism . Appl Environ Microbiol , 60 ( 12 ) : 4517 – 4526 .
  • Ehrlich , H L and Newman , D K . 2008 . Geomicrobiology, , Fifth Edition , 656 Boca Raton, FL : CRC Press .
  • Emerson , D and Moyer , C . 1997 . Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH . Appl Environ Microbiol , 63 ( 12 ) : 4784 – 4792 .
  • Emerson , D and Revsbech , N P . 1994 . Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Field studies . Appl Environ Microbiol , 60 ( 11 ) : 4022 – 4031 .
  • Folk , R L and Lynch , F L . 1997 . The possible role of nanobacteria (dwarf bacteria) in clay-mineral diagenesis and the importance of careful sample preparation in high-magnification SEM study . J Sediment Res , 67 ( 3 ) : 583 – 589 .
  • Fortin , D and Langley , S . 2005 . Formation and occurrence of biogenic iron-rich minerals . Earth Sci Rev , 72 : 1 – 19 .
  • Gerhardt , S , Brune , A and Schink , B . 2005 . Dynamics of redox changes of iron caused by light-dark variations in littoral sediment of a freshwater lake . Biogeochemistry , 74 : 323 – 339 .
  • Ghiorse , W C . 1984 . Biology of iron-depositing and manganese-depositing bacteria . Ann Rev Microbiol , 38 : 515 – 550 .
  • Gorby , Y A , Yanina , S , McLean , J S , Rosso , K M , Moyles , D , Dohnalkova , A , Beveridge , T J , Chan , I S , Kim , B H , Kim , K S , Culley , D E , Reed , S B , Romine , M F , Saffarini , A , Hill , E A , Shi , L , Elias , D A , Kennedy , D W , Pinchuk , G , Watanabe , K , Ishii , S , Logan , B , Nealson , K H and Fredrickson , J K . 2005 . Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms . Proc Natil Acad Sci , 103 ( 30 ) : 11359 – 11363 .
  • Hallberg , R and Ferris , F G . 2004 . Biomineralization by Gallionella . Geomicrobiol J , 21 : 325 – 330 .
  • Hanert , H H . 1981 . “ The genus Gallionella ” . In The Prokaryotes , Edited by: Starr , M P , Stolp , H , Trueper , H G , Balows , A and Schlegel , H G . 509 – 515 . Berlin : Springer .
  • Hegler , F , Posth , N R , Jiang , J and Kappler , A . 2008 . Physiology of phototrophic iron(II)-oxidizing bacteria – implications for modern and ancient environments . FEMS Microbiol Ecol. , 66 : 250 – 260 .
  • Heising , S , Richter , L , Ludwig , W and Schink , B . 1999 . Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes iron in coculture with a ‘Geospirillum’ sp. strain . Arch Microbiol , 172 : 116 – 124 .
  • Heising , S and Schink , B . 1998 . Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain . Microbiology , 144 : 2263 – 2269 .
  • Ivarsson , M , Lindblom , S , Broman , C and Holm , N G . 2008 . Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments . Geobiology , 6 : 155 – 170 .
  • Jeon , B , Dempsey , B A , Burgos , W D , Royer , R A and Roden , E E . 2004 . Modeling the sorption kinetics of divalent metal ions to hematite . Water Res , 38 ( 10 ) : 2499 – 2504 .
  • Jiao , Y and Newman , D K . 2007 . The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1 . J Bacteriol , 189 : 1765 – 1773 .
  • Jiao , Y , Kappler , A , Croal , L R and Newman , D K . 2005 . Isolation and characterization of a genetically traceable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1 . Appl Environ Microbiol , 71 : 4487 – 4496 .
  • Johnson , K J , Ams , D A , Wedel , A N , Szymanowski , J ES , Weber , D L , Schneegurt , M A and Fein , J B . 2007 . The impact of metabolic state on Cd adsorption onto bacterial cells . Geobiology , 5 : 211 – 218 .
  • Kappler , A , Schink , B and Newman , D K . 2005 . Fe(III) Mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1 . Geobiology , 3 : 235 – 245 .
  • Kappler , A and Newman , D K . 2004 . Formation of Fe(III)-Minerals by Fe(II)-oxidizing photoautotrophic bacteria . Geochim Cosmochim Acta , 68 : 1217 – 1226 .
  • Kappler , A and Straub , K L . 2005 . Geomicrobiological cycling of iron . Rev Mineral Geochem , 59 : 85 – 108 .
  • Kiernan , J A . 2000 . Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do . Microsc Today , 1 : 8 – 12 .
  • Little , C TS , Glynn , S EJ and Mills , R A . 2004 . Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents . Geomicrobiol J , 21 : 415 – 429 .
  • Neubauer , S C , Toledo-Durán , G E , Emerson , D and Megonigal , J P . 2007 . Returning to their roots: Iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere . Geomicrobiol J , 24 : 65 – 73 .
  • Rakshit , S , Matocha , C J and Coyne , M S . 2008 . Nitrite reduction by siderite . Soil Sci Soc Amer J , 72 : 1070 – 1077 .
  • Reguera , G , McCarthy , K D , Mehta , T , Nicoll , J S , Tuominen , M T and Lovley , D R . 2005 . Extracellular electron transfer via microbial nanowires . Nature , 435 : 1098 – 1101 .
  • Schaedler , S , Burkhardt , C and Kappler , A . 2008 . Evaluation of electron microscopic sample preparation methods and imaging techniques for characterization of cell-mineral aggregates . Geomicrobiol J , 25 : 228 – 239 .
  • Schwertmann , U and Cornell , R M . 2000 . Iron Oxides in the Laboratory. , Second edition , New York : Wiley .
  • Shapiro , L , McAdams , H H and Losick , R . 2002 . Generating and exploiting polarity in bacteria . Science , 298 : 1942 – 1946 .
  • Sobolev , D and Roden , E E . 2001 . Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH . Appl Environ Microbiol , 67 ( 3 ) : 1328 – 1334 .
  • Straub , K L , Benz , M , Schink , B and Widdel , F . 1996 . Anaerobic, nitrate-dependent microbial oxidation of ferrous iron . Appl Environ Microbiol , 62 : 1458 – 1460 .
  • Stumm , W and Morgan , J J . 1995 . Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1040 New York : Wiley-Interscience .
  • Stumm , W and Sulzberger , B . 1992 . The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes . Geochim Cosmochim Acta , 56 : 3233 – 3257 .
  • Tebo , B M , Bargar , J R , Clement , B G , Dick , G J , Murray , K J , Parker , D , Verity , R and Webb , S M . 2004 . Biogenic manganese oxides: Properties and mechanisms of formation . Ann Rev Earth Planet Sci , 32 : 287 – 328 .
  • Thamdrup , B . 2000 . Bacterial manganese and iron reduction in aquatic sediments . Adv Microb Ecol , 16 ( 16 ) : 41 – 84 .
  • Urrutia , M M , Kemper , M , Doyle , R and Beveridge , T J . 1992 . The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls . Appl Environ Microbiol , 58 : 3837 – 3844 .
  • Weber , K A , Achenbach , L A and Coates , J D . 2006 . Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction . Nature Rev Microbiol , 4 : 752 – 764 .
  • Widdel , F , Schnell , S , Heising , S , Ehrenreich , A , Assmus , B and Schink , B . 1993 . Ferrous iron oxidation by anoxygenic phototrophic bacteria . Nature , 362 : 834 – 836 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.