150
Views
4
CrossRef citations to date
0
Altmetric
Articles

Restrictions on the Production of Multi-Wall Carbon Nanotubes and Nanofibers by Gallionella sp.

, &
Pages 709-715 | Received 01 Sep 2014, Accepted 01 Aug 2015, Published online: 12 Apr 2016

References

  • Baddour CE, Briens C. 2005. Carbon nanotube synthesis: a review. Inter J Chem React Eng 3(1):49–62.
  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL. 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480):751–754.
  • Bilecka I, Niederberger M. 2010. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374.
  • Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF. 2009. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73(13):3807–3818.
  • Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5(4):717–727.
  • Comolli LR, Luef B, Chan CS. 2011. High-resolution 2D and 3D cryo-TEM reveals structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle. Environ Microbiol 13(11):2915–2929.
  • Dai H. 2002. Carbon nanotubes: synthesis, integration, and properties. Accts Chem Res 35(12):1035–1044.
  • De Baar HJ, De Jong JT, Bakker DC, Löscher BM, Veth C, Bathmann U, Smetacek V. 1995. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 37(3):412–415.
  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Joo S W. 2014. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):1–13.
  • Ferris FG. 2005. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiol J 22(3–4):79–85.
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8(9):623–633.
  • Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier JC. 2001. Root-growth mechanism for single-wall carbon nanotubes. Phys Rev Lett 87(27): 275504.
  • Goodhew PJ. 1972. Specimen Preparation in Materials Science. North Holland: Elsevier.
  • Hallbeck L, Pedersen K. 1991. Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137(11):2657–2661.
  • Hallberg R, Ferris FG. 2004. Biomineralization by Gallionella. Geomicrobiol J 21(5):325–330.
  • Hallberg R, Tai CW. 2014. Multi-wall carbon nanotubes and nanofibers in Gallionella. Geomicrobiol J 31(9):764–768.
  • Han MY, Özyilmaz B, Zhang Y, Kim P. 2007. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98(20):206805.
  • Hanert HH. 2006. The genus Gallionella. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (Eds), The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass, 990–995. New York: Springer-Verlag.
  • Harris PJF. 2001. Carbonaceous contaminants on support films for transmission electron microscopy. Carbon 39(6):909–913.
  • Hu B, Wang SB, Wang K, Zhang M, Yu SH. 2008. Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem C 112(30):11169–11174.
  • Jasti R, Bertozzi CR. 2010. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem Phys Lett 494(1):1–7.
  • Kappler A, Newman DK. 2004. Formation of Fe (III)-minerals by Fe (II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68(6):1217–1226.
  • Kim J, Kim S, Tazaki K. 2002. Mineralogical characterization of microbial ferrihydrite and schwertmannite, and non-biogenic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environ Geol 42(1):19–31.
  • Klie RF, Ciuparu D, Pfefferle L, Zhu Y. 2004. Multi-walled carbon nanotubes on amorphous carbon films. Carbon 42(10):1953–1957.
  • Konhauser KO. 1998. Diversity of bacterial iron mineralization. Earth-Sci Rev 43(3):91–121.
  • Konishi H, Xu H, Guo H. 2012. Nanostructures of natural iron oxide nanoparticles. In: Barnard AS, Guo H, editors. Nature's Nanostructures. Singapore: Pan Stanford Publishing, p75–113.
  • Krepski ST, Hanson TE, Chan CS. 2012. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environ Microbiol 14(7):1671–1680.
  • Laurent C, Flahaut E, Peigney A, Rousset A. 1998. Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New J Chem. 22(11):1229–1237.
  • Lee O, Jung J, Doo S, Kim SS, Noh TH, Kim KI, Lim YS. 2010. Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Metals Mater Inter 16(4):663–667.
  • Li J, Li YL. 2014. Simulation of the impacts of diagenesis or low-grade metamorphism on neutrophilic microaerobic Fe(II)-oxidizing biofilm. Science China Earth Sci 57(5):1021–1029.
  • Li J, Ye Q, Cassell A, Ng H T, Stevens R, Han J, Meyyappan M. 2003. Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82(15):2491–2493.
  • Little CTS, Glynn SEJ, Mills RA. 2004. Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol J 21(6):415–429.
  • Mohanpuria P, Rana NK, Yadav SK. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517.
  • Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa FO, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7(4):283–286.
  • Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. 2011. Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884.
  • Slack JF, Grenne T, Bekker A, Rouxel OJ, Lindberg PA. 2007. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planet Sci Lett 255(1): 243–256.
  • Suzuki T, Hashimoto H, Matsumoto N, Furutani M, Kunoh H, Takada J. 2011. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks. Appl Environ Microbiol 77(9):2877–2881.
  • Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB. 2010. Synthesis methods of carbon nanotubes and related materials. Materials 3(5):3092–3140.
  • Unrau CJ, Axelbaum RL, Lo CS. 2010. High-yield growth of carbon nanotubes on composite Fe/Si/O nanoparticle catalysts: A Car−Parrinello molecular dynamics and experimental study. J Phys Chem C 114(23):10430–10435.
  • Vatter AE, Wolfe RS. 1956. Electron microscopy of Gallionella ferruginea. J Bacteriol 72(2): 248.
  • Weber KA, Achenbach LA, Coates JD. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764.
  • Yu D, Liu F. 2007. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett 7(10):3046–3050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.