242
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Alkaline Phosphatase: An Appraisal of its Critical Role in C-Limited Deep-Sea Sediments of Central Indian Basin

, , , , , , , & show all
Pages 274-288 | Received 01 May 2015, Accepted 01 May 2016, Published online: 18 Oct 2016

References

  • Aller RC, Aller JY. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56:905–993.
  • Ammerman JW, Azam F. 1991. Bacterial 5′-nucleotidase activity in estuarine and coastal marine waters: Characterization of enzyme activity. Limnol Oceanogr 36:1427–1436.
  • Ayyakkannu K, Chandramohan D. 1971. Occurrence and distribution of phosphate solubilising bacteria and phosphatase in marine sediments at Port Novo. Mar. Biol. 11:201–205.
  • Billen G. 1982. Modelling the processes of organic matter degradation and nutrients recycling in sedimentary systems In: Nedwell, DB, Brown, CM, editors. Sediment Microbiology. London: Academic Press, p15–52.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917.
  • Bortone G, Gemelli S, Rambaldi A, Tilche A. 1992. Nitrification, denitrification and biological phosphate 564 removal in sequencing batch reactors treating piggery wastewater. Water Sci Technol 26(5–6):977–985.
  • Carlsson P, Graneli E. 1993. Availability of humic bound nitrogen for coastal phytoplankton. Estuar Coast Shelf S 36:433–477.
  • Cauwet G. 1978. Organic chemistry of seawater particulates: concepts and developments. Oceanol Acta 1:99–105.
  • Chen YP, Rekha DP, Arunshen BA, Lai AW, Young CC. 2006. Phosphate solubilizing bacteria from subtropical soil and their tri-calcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41.
  • Chrôst RJ. 1990. Microbial ectoenzymes in aquatic environments. In: Overbeck J, Chrôst RJ, editors. Aquatic Microbial Ecology: Biochemical and Molecular Approaches. New York: Brock/Springer, p47–78.
  • Chrôst RJ. 1991. Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag, p29–59.
  • Chuang P-C, Young MB, Miller LG, Herrera-Silveira JA, Paytan A. 2015. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico. Biogeosci Discuss 12:17913–17951.
  • Claire MW, Catling DC, Zahnle KJ. 2006. Biogeochemical modeling of the rise of atmospheric oxygen. Geobiol 4:239–269.
  • Colman AS, Blake RE, Karl DM, Fogel ML, Turekian KK. 2005. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proc Natl Acad Sci 102:13023–13028.
  • Cotner JB, Ammerman JW, Peele ER, Bentzen E. 1997. Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquat Microb Ecol 13:141–149.
  • Dalebroux Z. D., Svensson S. L., Gaynor E. C., Swanson M. S. (2010). ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 74:171–199.
  • Danovaro R, Fabiano M, Della Croce N. 1993. Labile organic matter and microbial biomasses in deep- sea sediments (Eastern Mediterranean Sea). Deep-Sea Res I 40(5):953–965.
  • Das A, Fernandes CEF, Naik SS, Nath BN, Suresh I, Mascarenhas-Pereira MBL, Gupta SM, Khadge NH, Prakash Babu C, Borole DV, Sujith PP, Valsangkar AB, Mourya BS, Biche SU, Sharma R, Loka Bharathi PA. 2011a. Bacterial response to contrasting sediment geochemistry in the Central Indian Basin. Sedimentology 58:756–784.
  • Das S, Lyla PS, Ajmal Khan S. 2007. Biogeochemical processes in the continental slope of Bay of Bengal: I. Bacterial solubilization of inorganic phosphate. Rev Biol Trop Int J Trop 55(1):1–9.
  • Das A, Sujith PP, Mourya BS, Biche SU, Loka Bharathi PA. 2011b. Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin. Extremophiles 15(2):177–189.
  • Degobbis D, Homme-Maslowskab E, Oriob AA, Donazzolob R, Pavonib B. 1986. The role of alkaline phosphatase in the sediments of Venice lagoon on nutrient regeneration. Estuar Coast Shelf S. 22:421–437.
  • Deinema MH, Van Loosdrecht M, Scholten A. 1985. Some physiological characteristics of acinetobacter spp. accumulating large amounts of phosphorus. Water Sci Technol 17:119–125.
  • Delistraty DA, Hershner C. 1983. Determination of adenine nucleotide levels in Zostera marina (eelgrass). J Appl Biochem 5:404–405.
  • De Souza MJBD, Nair S, Chandramohan D. 2000. Phosphate Solubilising bacteria around Indian peninsula. Ind J Mar Sci 29:48–51.
  • Dyhrman ST, Ruttenberg KC. 2006. The presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr 51(3):1381–1390.
  • Egeberg PK. 2000. Adenosine triphosphate (ATP) as a proxy for microbial numbers in deep-sea sediments and correlations with geochemical parameters (Site 994). In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP, editors. Proc Ocean Drilling Program, Scientific Results, Vol. 164.
  • Eichler J, Adams MWW. 2005. Posttranslational protein modification in archaea. Microbiol Mol Biol Rev 69(3):393–425.
  • Feely RA, Massoth GJ, Baker ET, Cowen JP, Lamb MF, Krogslund KA. 1990. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet Sci Lett 96:305–318.
  • Fichez R. 1991. Composition and fate of organic matter in submarine cave sediments: implications for the biogeochemical cycle of organic carbon. Oceanol Acta 14:369–377.
  • Froelich, P.N., Bender, M.L., Heath, G.R.. 1977. Phosphorus accumulation in metalliferous sediments on the East Pacific Rise. Earth Planet Sci Lett 34: 351–359.
  • Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, G.R., DeVries, T. 1982. The marine phosphorus cycle. American Journal of Science 282:474–511.
  • Gomez E, Durillon C, Rofes G, Picot B. 1999. Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence. Water Res 33(10):2437–2447.
  • Grasshoff K, Ehrhardt M, Kremling K. 1983. Methods of Seawater Analysis, 2nd edition. Weinheim, Deerfield Beach, FL: Verlag Chemie, p419.
  • Guilbeau ET. 2003. The effects of sediment grain size and oil exploration on microbial ATP biomass. MSc Thesis. Louisiana State University and Agricultural and Mechanical College.
  • Guildford SJ, Hecky RE. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol Oceanogr 45(6):1213–1223.
  • Hartikainen H, Yli-Halla M. 1996. Solubility of soil phosphorus as influenced by urea. Z. Pflanzenernähr. Bodenk 152:435–439.
  • Hewson I, Jacobson-Meyers ME, Fuhrman JA. 2007. Diversity and biogeography of bacterial assemblages in surface sediments across the San Pedro Basin, Southern California Borderlands. Environ Microbiol 9:923–933.
  • Hobbie JE, Daley RJ, Jasper S. 1977. Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl Environ Microbiol 3:1225–1228.
  • Holm-Hansen O, Booth CR. 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol Oceanogr 11:510–519.
  • Hoppe HG. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308.
  • Hoppe HG. 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole, JJ, editors. Current Methods in Aquatic Microbial Ecology. Boca Raton, FL: CRC Press, pp423–431.
  • Hoppe HG. 2003. Phosphatase activity in the sea. Hydrobiologia 493:187–200.
  • Hoppe HG, Ullrich S. 1999. Profiles of ectoenzymes in the Indian Ocean: phenomena of Phosphatase activity in the mesopelagic zone. Aquat Microb Ecol 19:129–138.
  • Hupfer M, Uhlmann D. 1991. Microbially mediated phosphorus exchange across the mud-water interface. Verh Internat Verein Limnol 24:2999–3003.
  • Ingall E, Jahnke R. 1994. Evidence of enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim Cosmochim Acta 58:2571–2575.
  • Iyer SD, Mascarenhas-Pereira MBL, Nath BN. 2007. Native aluminium (spherules and particles) in the Central Indian Basin sediments: implications on the occurrence of hydrothermal events. Mar Geol 240:177–184.
  • Jensen HS, Mortensen PB, Andersen FO, Rasmussen E, Jensen A. 1995. Phosphorus cycling in a coastal marine sediment, Århus Bay, Denmark. Limnol Oceanogr 40:908–917.
  • Joux F, Lebaron P. 1997. Ecological implications of an improved direct viable count method for aquatic bacteria. Appl Environ Microbiol 63:3643–3647.
  • Kaiser D, Kowalski N, Böttcher ME, Yan B, Unger D. 2015. Benthic nutrient fluxes from mangrove sediments of an anthropogenically impacted estuary in Southern China. J Mar Sci Eng 3:466–491.
  • Kantachote D, Charernjiratrakul W, Noparatnaraporn N, Oda K. 2008. Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production. Electronic J Biotechnol 11(2).
  • Kerrn-Jespersen JP, Henze M. 1993. Biological phosphorus uptake under anoxic and aerobic conditions. Water Res 27(4):617–624.
  • Khan MS, Zaidi A, Wani PA. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture: a review. Agron Sustain Dev 27:29–43.
  • Kietavainen R. and Purkamo L. 2015. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front. Microbiol. http://dx.doi.org/10.3389/fmicb.2015.00725.
  • Kochert G. 1978. Carbohydrate determined by the phenolsulfuric acid method. In: Hellebust JA, Craigie JJ, editors. Handbook of Physiological Methods: Physiological and Biochemical Methods. Cambridge: Cambridge University Press, p95–97.
  • Koga Y, Morii H. 2007. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev 71(1):97–120.
  • Kogure K, Simidu U, Taga N. 1984. An improved direct viable count method for aquatic bacteria. Arch Hydrobiol 102:117–122.
  • Krom MD, Bemer RA. 1980. Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25:797–806.
  • Loka Bharathi PA, Nair S, DeSouza MJBD, Chandramohan D 1999. Truce with oxygen – Anaerobiosis outcompete aerobiosis in the Antarctic lacustrine bacteria. Curr Sci 76(12):1585–1587.
  • Lovley DR. 1991. Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol Rev 55:259–287.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275.
  • Manzoni S., and G. Katul (2014). Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils, Geophysical Research Letters 41(20): 7151–7158.
  • Martin W, Russel MJ. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philos T R Soc B 362:1887–1925.
  • Macdonald A. G. 1975. Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils, Geophysical Research Letters 41(20): 7151–7158.
  • Meyer-Reil LA. 1991. Ecological aspects of enzymatic activity in marine sediments. In: Chrost RJ, editor. Microbial Enzymes in Aquatic Environments. Berlin: Springer-Verlag, p84–95.
  • Mino T, Liu W-T, Kurisu F, Matsuo T. 1995. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci Technol 31(2):25–34.
  • Nath BN, Borole DV, Aldahan A, Patil SK, Mascarenhas-Pereira MBL, Possnert G, Ericsson T, Ramaswamy V, Gupta SM. 2008. 210Pb, 230Th, and 10Be in Central Indian Basin seamount sediments: signatures of degassing and hydrothermal alteration of recent origin. Geophys Res Lett 35:L09603.
  • Nath BN, Mudholkar AV. 1989. Early diagenetic processes affecting nutrients in the pore-waters of Central Indian Ocean cores. Mar Geol 86:57–66.
  • Newman S, Reddy KR. 1993. Alkaline phosphatase activity in sediment-water column of a hypereutrophic lake. J Environ Qual 22:832–838.
  • Pachmayr F. 1960. Vorkommen und Bestimmug Von Schwefelverbindungen in Mineralwasser. Dissertation. University of Munchen, Munich, Germany,48 pp.
  • Pai SC, Gong GC, Liu KK. 1993. Determination of dissolved oxygen in seawater by direct spectrophotometry total iodine. Mar Chem 41:343–351.
  • Pasek MA, Harnmeijerb JP, Buickb R, Gulla M, Atlasa Z. 2013. Evidence for reactive reduced phosphorus species in the early Archean ocean. PNAS 110(25):10089–10094.
  • Pasek MA, Sampson JM, Atlas Z. 2014. Redox chemistry in the phosphorus biogeochemical cycle. PNAS 111(43):15468–15473.
  • Patience RL, Clayton CJ, Kearsley AT, Rowland SJ, Bishop AN, Rees AWG, Bibby KG, Hopper AC. 1990. An integrated biochemical, geochemical, and sedimentological study of organic diagenesis in sediments from Leg 112. In: Suess E, von Huene R, editors. Proceedings of the Ocean Drilling Program, Scientific Results, Proc. ODP, Sci. Results. College Station, TX, Vol. 112, p135–153 (Ocean Drilling Program); doi: 10.2973/odp.proc.sr.112.191.1990.
  • Perry MJ. 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar Biol 15:113–119.
  • Pfennig N, Widdel F, Trüpper HG. 1981. The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüpper HG, Balows A, Schlegel HG, editors. The Prokaryotes. Berlin & Heidelberg: Springer, vol. 1, p926–940.
  • Picard A, Daniel I. 2013. Pressure as an environmental parameter for microbial life - A review, Biophysical Chemistry. http://dx.doi.org/10.1016/j.bpc.2013.06.019.
  • Raghukumar C, Loka Bharathi PA, Ansari ZA, Nair S, Ingole BS, Sheelu G, Mohandass C, Nath BN, Rodrigues N. 2001. Bacterial standing stock, meiofauna and sediment-nutrient characteristics: Indicators of benthic disturbance in the Central Indian Basin. Deep-Sea Res II 48(16):3381–3399.
  • Rao VP, Michard A, Naqvi SWA, Bottcher ME, Krishnaswamy R, Thamban M, Natarajan R, Borole DV. 2002. Quaternary phosphorites off the southeast coast of India. Chem Geol 182:483–502.
  • Rao VP, Nath BN. 1988. Nature, distribution and origin of clay minerals in grain size fractions of sediments from Manganese Nodule Field, Central Indian Ocean Basin. Ind J Mar Sci 17:202–207.
  • Ruttenberg KC, Dyhrman ST. 2005. Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system. J Geophys Res 110, ClOS13, doi 10.1029/2004JC002837.
  • Saito T, Brdjanovic D, van Loosdrecht MCM. 2004. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res 38(17):3760–3768.
  • Schimel JP, Wetterstedt JAM, Holden PA, Trumbore SE. 2011. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biol Biochem 43(5):1101–1103.
  • Schrum HN, Murray RW, Gribsholt B. 2012. Comparison of rhizon sampling and whole round squeezing for marine sediment pore water. Technical developments. Scientific Drilling, No. 13.
  • Schulz, H. D. & Zabel, M. (eds) 2000. Marine Geochemistry. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag.
  • Slomp CP, Malschaert JFP, Van Raaphorst W. 1998. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnol Oceanogr 43(5):832–846.
  • Steenbergh AK, Bodelier, PLE, HoogveldHL, Slomp CP, Laanbroek, HJ. 2011. Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient. Limnol Oceanogr 56(6):2018–2026.
  • Sundby B, Gobeil C, Silverberg N, Mucci A. 1992. The phosphorus cycle in coastal marine sediments. Limnol Oceanogr 37:1129–1145.
  • Takano Y, Edazawa Y, Kobayashi K, Urabe T, Marumo K. 2005. Evidence of sub-vent biosphere: enzyme activities in 308˚C deep-sea hydrothermal systems at Suiyo seamount, Izu-Bonin Arc, Western Pacific Ocean. Earth Planet Sci Lett 229(3–4):193–203.
  • Tamminen T. 1989. Dissolved organic phosphorus regeneration by bacterioplankton: 5′-nucleotidase activity and subsequent phosphate uptake in a mesocosm enrichment experiment. Mar Ecol- Prog Ser 58:89–100.
  • Thamdrup B, Dalsgaard T. 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68(3):1312–1318.
  • Thingstad TF, Rassoulzadegan F. 1995. Nutrient limitations, microbial food webs and ‘biological pumps’: suggested interactions in a P- limited Mediterranean. Mar Ecol-Prog Ser 117:299–306.
  • Tsuneda S, Ohno T, Soejima K, Hirata A. 2006. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem Engin J. 27(3):191–196.
  • van Leeuwen YM, Velikov KP, Kegel WK. 2012. Stabilization through precipitation in a system of colloidal iron (III) pyrophosphate salts. J Colloid Interf Sci 381:43–47.
  • Wankel SD, Buchwald C, Ziebis W, Wenk CB, Lehmann MF. 2015. Nitrogen cycling in the deep sedimentary biosphere: nitrate isotopes in pore waters underlying the oligotrophic North Atlantic. Biogeosciences 12:7483–7502.
  • Zhou Y, Pijuan M, Yuan, Z. 2007. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms Biotechnol Bioeng. 98(4):903–912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.