300
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Substrate Availability, pH, and Temperature Influence Methanogenesis and Mild Steel Corrosion

, &
Pages 729-736 | Received 01 Jun 2016, Accepted 01 Oct 2016, Published online: 23 Feb 2017

References

  • Almahamedh HH, Wiliamson CH, Spear SR, Mishra BH, Olson DL. 2011. Identification of Microorganisms and Their Effects on Corrosion of Carbon Steel Pipelines. Paper No. 11231. Corrosion, Houston Texas: NACE International.
  • American Public Health Association (APHA). 1980. Standard Methods for the Examination of Water and Waste Water. Washington, DC: American Public Health Association, p439–440.
  • Archer OB, Harris JE. 1986. Methanogenic bacteria and methane production in various habitats. In: Barnes EM, Meed GC, editors. Anaerobic Bacteria in Habitats Other than Man. Oxford, London: Blackwell Scientific Publications, p185–223.
  • Bae H-S, Holmes ME, Chanton JP, Reddy KR, Ogram A. 2015. Distribution, activities, and interactions of methanogens and sulfate-reducing prokaryotes in the Florida Everglades. Appl Environ Microbiol 81:7431–7442.
  • Blake LI, Tvert A, Ovreas L, Head IM, Gray ND. 2015. Response of methanogens in Arctic sediments to temperature and methanogenic substrate availability. PLoS ONE 10:1–18.
  • Boopathy R, Daniels L. 1991. Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol 57:2104–2108.
  • Callbeck CM, Agrawal A, Voordouw G. 2013. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol 79:5059–5068.
  • Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958.
  • Demirel B, Scherer P. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190.
  • Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832.
  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM. 2009. Biocorrosive thermophilic microbial communities in Alaskan worth slope oil facilities. Environ Sci Technol 43:7977–7984.
  • Eaton AD, Clesceri LS, Greenberg AE. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. Baltimore, Maryland: United Books Press, p1126.
  • Fang HHP, Xu LC, Chan KY. 2002. Effects of toxic metals and chemicals on biofilm and biocorrosion. Wat Res 36:4709–4716.
  • Forte Giacobone AF, Rodriguez SA, Burkart AL, Pizarro RA. 2011. Microbiological induced corrosion of AA 6061 nuclear alloy in highly diluted media by Bacillus cereus RE 10. Int Biodeter Biodegr 65:1161–1168.
  • Garcia JL, Patel BK, Olivier B. 2000. Taxonomic, phylogenetic and ecological diversity of the methanogenic Archaea. Anaerobe 6:205–226.
  • Goodwin S, Zeikus JG. 1987. Physiological adaptations of anaerobic bacteria to low pH: metabolic control of proton motive force in Sarcina ventriculi. J Bacteriol 169:2150–2157.
  • Grigoryan AA, Lambo A, Lin S, Cornish SL, Jack TR, Voordouw G. 2009. Souring remediation by field-wide nitrate injection in an Alberta oil field. J Can Petrol Technol 48:58–61.
  • Gu T. 2012. New understandings of biocorrosion mechanisms and their classifications. J Microb Biochem Technol 4:3–6.
  • Hao LP, Lu F, Li L, Shao LM, He PJ. 2012. Shift of pathways during initiation of thermophilic methanogenesis at different initial pH. Bioresour Technol 126:418–424.
  • Huson D, Richter D, Rausch C, Dezulian T, Franz M, Rupp R. 2007. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformat 8, 460.
  • Jorgensen B.B. 1983. Processes at the sediment water interface In: Bolin B, Cook RB, editors, The Major Biogeochemical Cycles and Their Interactions. New York, NY: Wiley, p477–509.
  • Keasler V, Bennett B, Bromage B, Franco RJ, Lefevre D, Shafer J, Babatunde M. 2010. Bacterial Characterization and Biocide Qualification for Full Well Stream Crude Oil Pipelines, Corrosion, Paper No. 10250, San Antonio, TX: NACE International.
  • Kilbane I, Lambo B. 2005. Quantifying the contribution of various bacterial groups in microbially influenced corrosion. Paper No. 05629. Corrosion, Houston Texas. NACE International.
  • Kristjansson JK, Schonheit P, Thauer RK. 1982. Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282.
  • Lane RA. 2005. Under the microscope: understanding, detection, and preventing microbiologically influenced corrosion. The AMPTIAC Quarterly 9:3–8.
  • Li D, Midgley DJ, Ross PS, Oytan Y, Abel GC, Vock H, Daud WA, Hendry P. 2012. Microbial biodiversity of a Malaysian oil field and a systematic comparison with oil reservoir worldwide. Arch Microbiol 194:513–523.
  • Liang R, Grizzle RS, Duncan KE, McInerney MJ, Suflita JM. 2014. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Front Microbiol 5:89.
  • Lin J, Madida BB. 2015. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp. J Basic Microbiol 55:1168–1178.
  • Lovley DR, Phillips EJP. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689.
  • Lovley DR, Phillips EJP. 1987. Competitive mechanisms of inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53:2636–2641.
  • Mand J, Park HS, Jack TR, Voordouw G. 2014. The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 5:268.
  • Mori K, Tsurumaru H, Harayama S. 2010. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426–430.
  • NACE Standard Protocol. 2013. Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. NACE – SP0775-2013. Houston, Texas, USA: NACE International Institute.
  • Nemati M, Jenneman GE, Voordouw G. 2001. Mechanistic study of microbial control of hydrogen sulphide production in oil reservoirs. Biotechnol Bioeng 74:424–434.
  • Neria-Gonzalez I, Wang ET, Ramirez F, Romero JM, Hernandez C. 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the South East of Mexico. Anaerobe 12:122–133.
  • Okoro CC. 2010. Microbiological impacts of produced water discharges in nearshore shallow marine waters near Chevron's Escravos tank farm. J Am Sci 6:93–101.
  • Okoro CC, Amund OO, Samuel OB. 2013. Biologically active solid deposits in biocide treated oil and gas pipelines from a Nigerian onshore oil production facility. Int J Ecol Environ Sci 39:51–58.
  • Okoro CC, Ekun OA, Nwume MI, Lin J. 2016. Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis. Corros Sci 103:242–254.
  • Okoro CC, Smith S, Chiejina L, Lumactud R, An D, Park HS, Voordouw J, Lomans BP, Voordouw G. 2014. Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria. J Ind Microbiol Biotechnol 41:665–678.
  • Park HS, Chatterjee I, Dong X, Wang SH, Sensen CW, Caffrey SM, Jack TR, Boivin J, Voordouw G. 2011. Effect of sodium bisulfite injection on the microbial community composition in a brackish-water-transporting pipeline. Appl Environ Microbiol 77:6908–6917.
  • Pruesse EC, Quast K, Knittel B, Fuchs W, Ludwig J, Peplies J, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196.
  • Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, Fournier J, Voordouw G, Gieg LM 2011. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446.
  • Robinson RW. 1986. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl Environ Microbiol 52:17–27.
  • Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. 2014. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415.
  • Schloss PD, Westcott SL. 2011. Assessing and improving methods used in OTU-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226.
  • Schloss PD, Westcott SL, Thomas R, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG. Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.
  • Sheng X, Ting Y-P, Pehkonen SO. 2008. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. J Colloid Interface Sci 321:256–264.
  • Sleutels THJA, Darus L, Hamelers HVM, Buisman CJN. 2011. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresour Technol 102:11172–11176.
  • Soh J, Dong X, Caffrey SM, Voordouw G, Sensen CW. 2013. Phonenix 2. A locally installable large scale 16S rRNA gene sequence analysis pipeline with web interface. J Biotechnol 167:393–403.
  • Stevenson BS, Drilling HS, Lawson PA, Duncan KE, Parisi VA, Suflita JM. 2011. Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure. Environ Microbiol 13:1078–1090.
  • Trüper HG, Schlegel HG. 1964. Sulfur metabolism in Thiorhodanceae. I. Quantitative measurements in growing cells of Chromatium okehii. Antonie van Leewenhoek 30:225–238.
  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S. 2010. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788.
  • Usher KM, Kaksonen AH, MacLeod ID. 2014. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros Sci 83:189–197.
  • Whitman WB, Bowen TL, Boone DR. 1992. The methanogenic bacteria. In: Trüper BA, Dworkin M, Harder W, Schleifer K-H, editors. The Prokaryotes, 2nd ed. New York, NY: Springer-Verlag, p 719–767.
  • Youssef N, Elshahed MS, McLnerney MS. 2009. Chapter 6 Microbial process in oil fields: culprits, problems and opportunities. Adv Appl Microbiol 66:141–251.
  • Yue JC, Clayton MK. 2005. A similarity measure based on species proportions. Commun Stat Theory Methods 34:2123–2131.
  • Zhang T, Fang HHP, Ko BCB. 2003. Methanogen population in a marine biofilm corrosive to mild steel. Appl Microbiol Biotechnol 63:101–106.
  • Zhao Z, Zhang Y, Chen S, Quan X, Yu Q. 2014. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in an up-flow anaerobic sludge blanket (UASB) reactor. Sci Rep 10/17/2014:1–8.
  • Zinder SH, Anguish T, Cardwell SC. 1984. Effect of temperature on methanogenesis in a thermophilic (58°C) anaerobic digester. Appl Environ Microbiol 47:808–813.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.