335
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Considerable Bacterial Community Structure Coupling with Extracellular Electron Transfer at Karst Area Stone in Yunnan, China

, , , , , , & show all
Pages 424-431 | Received 31 Jul 2017, Accepted 18 Sep 2017, Published online: 15 Feb 2018

References

  • Bennani Y, El-Kalliny AS, Appel PW, et al. 2014. Enhanced solar light photoelectrocatalytic activity in water by anatase-to-rutile TiO2 transformation. J Adv Oxid Technol. 17(2):285–296.
  • Boston PJ, Spilde MN, Northup DE, et al. 2008. Biogenic Fe/Mn oxides in caves and surface desert varnish: potential biosignatures for Earth and Mars. Astrobiology. 8:448.
  • Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C. 2007. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385:172–181. doi:10.1016/j.scitotenv.2007.06.022.
  • Chanyi R M, Koval S F. 2014, Role of type IV pili in predation by Bdellovibrio bacteriovorus. PloS one, 9(11): e113404.
  • Dashper SG, Butler CA, Lissel JP. 2005. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. Biol Chem 280(30):28095–28102. doi:10.1074/jbc.M503896200.
  • De Faria DLA, Venâncio Silva S, De Oliveira MT. 1997. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc. 28:873–878. doi:10.1002/(SICI)1097-4555(199711)28:11%3c873::AID-JRS177%3e3.0.CO;2-B.
  • De Mandal S, Panda A K, Bisht S S, et al. 2016. MiSeq HV4 16S rRNA gene analysis of bacterial community composition among the cave sediments of Indo-Burma biodiversity hotspot. Environ Sci Pollut R. 23(12): 12216–12226.
  • Ding J, Zhang Y, Quan X, et al. 2015. Anaerobic biodecolorization of AO7 by a newly isolated Fe (III)-reducing bacterium Sphingomonas strain DJ. J Chem Technol Biot. 90(1):158–165. doi:10.1002/jctb.4301.
  • Dong HL, Rech JA, Jiang HC, Sun H, Buck BJ. 2007. Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J Geophys Res. 112:G02030. doi:10.1029/2006JG000385.
  • Feng Q, Song YC, Bae BU. 2016. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresource Technol. 220:500–508. doi:10.1016/j.biortech.2016.08.085.
  • Friedmann EI, Ocampo R. 1976. Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Science. 193:1247–1249. doi:10.1126/science.193.4259.1247.
  • Friedmann EI. 1982. Endolithic microorganisms in the Antarctic cold desert. Science. 215(4536):1045–1053. doi:10.1126/science.215.4536.1045.
  • Esposito A, Ahmed E, Ciccazzo S, et al. 2015. Comparison of rock varnish bacterial communities with surrounding non-varnished rock surfaces: taxon-specific analysis and morphological description. Microb Ecol 70(3):741–750. doi:10.1007/s00248-015-0617-4.
  • Garcia-Pichel F, Lopez-Cortes A, Nubel U. 2001. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol. 67(4):1902–1910.
  • Granina L, Müller B, Wehrli B. 2004. Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem. Geol. 205(1):55–72.
  • Häder DP. 1981. Electrical and proton gradients in the sensory transduction of photophobic responses in the blue-green alga, Phormidium uncinatum. Arch Microbiol. 130(1):83–86. doi:10.1007/BF00527077.
  • Hartshorne RS, Reardon CL, Ross D, et al. 2009, Characterization of an electron conduit between bacteria and the extracellular environment. P. Nat Acad Sci. 106(52):22169–22174. doi:10.1073/pnas.0900086106.
  • He XY, Wang KL, Yu YZ, et al. 2009. The responses of soil microbial taxonomic diversity on vegetation communities and seasons in karst area. Acta Ecol Sin. 29:1763–1769.
  • He J, Zhang L, Jin S, et al. 2008. Bacterial communities inside and surrounding soil iron-manganese nodules. Geomicrobiol J. 25(1):14–24. doi:10.1080/01490450701829014.
  • Hofmann BA, Farmer JD. 2000. Filamentous fabrics in low temperature mineral assemblages: are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars. Planet Space Sci. 48:1077–1086. doi:10.1016/S0032-0633(00)00081-7.
  • Horath T, Bachofen R. 2009. Molecular characterization of an endolithic microbial community in dolomite rock in the Central Alps (Switzerland). Microb Ecol. 58(2):290–306. doi:10.1007/s00248-008-9483-7.
  • Hsu YK, Chen YC, Lin YG, et al. 2012. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. J Mater Chem. 22 (6):2733–2739. doi:10.1039/C1JM14355G.
  • Huber JA, Welch DBM, Morrison HG, et al. 2007. Microbial population structures in the deep marine biosphere. Science. 318(5847):97–100. doi:10.1126/science.1146689.
  • Hughes KA, Lawley B. 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol. 5(7):555–565. doi:10.1046/j.1462-2920.2003.00439.x.
  • Jaag O. 1945. Untersuchungen uber die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beitr Kryptogamenflora Schweiz. 9:1–560.
  • Jaki B, Orjala J, Heilmann J, et al. 2000. Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod. 63(3):339–343. doi:10.1021/np9903090.
  • José R, Goebel BM, Friedmann EI, et al. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol. 69(7):3858–3867. doi:10.1128/AEM.69.7.3858-3867.2003.
  • Julien C, Massot M, Baddour-Hadjean R, et al. 2003. Raman spectra of birnessite manganese dioxides. Solid State Ionics. 159(3–4):345–356. doi:10.1016/S0167-2738(03)00035-3.
  • Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. PNAS. 109:10042–10046. doi:10.1073/pnas.1117592109.
  • Koch C, Harnisch F. 2016. Is there a specific ecological niche for electroactive microorganisms? Chem Electro Chem. 3:1–15.
  • Klüpfel L, Piepenbrock A, Kappler A, et al. 2014. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci. 7(3):195–200. doi:10.1038/ngeo2084.
  • Kornienko N, Sakimoto KK, Herlihy DM, et al. 2016. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. PNAS. 113(42):11750–11755. doi:10.1073/pnas.1610554113.
  • Koschinsky A, Halbach P. 1995. Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochim Cosmochim Acta. 59(24):5113–5132. doi:10.1016/0016-7037(95)00358-4.
  • Laureanti J.A., Jones A.K. 2016. Photosynthetic Microbial Fuel Cells. In: Jeuken L. (eds) Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology, vol 158. Springer, Cham. p 159–175. https://doi.org/10.1007/10_2016_48
  • Lian B, Yuan DX, Liu ZH. 2011. Effect of microbes on karstification in karst ecosystems. Chin Sci Bull. 56(35):3743–3747. doi:10.1007/s11434-011-4648-z.
  • Li YB, Hou JJ, Xie DT. 2002. The recent development of research on karst ecology in Southwest China. Sci Geogr Sinica. 22(3):365–370.
  • Lovley DR, Phillips EJP, Gorby YA, Landa ER. 1991. Microbial reduction of uranium. Nature. 350:413–416. doi:10.1038/350413a0.
  • Lovley DR. 2006. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol. 4(7):497–508. doi:10.1038/nrmicro1442.
  • Lu A, Li Y, Jin S, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun. 3:768. doi:10.1038/ncomms1768.
  • Ma J, Ni H, Su D, et al. 2016. Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode. Int J Hydrogen Energ. 41(36):16191–16195. doi:10.1016/j.ijhydene.2016.05.255.
  • Manheim FT, Lane-Bostwick CM. 1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature. 335:59–62. doi:10.1038/335059a0.
  • Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 240:1319–1321. doi:10.1126/science.240.4857.1319.
  • Nealson K, Berelson W. 2003. Layered microbial communities and the search for life in the universe. Geomicrobiol J. 20:451–462. doi:10.1080/713851133.
  • Ng DHP, Kumar A, Cao B. 2016. Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biot. 100(16):6935–6946. doi:10.1007/s00253-016-7678-2.
  • Norris TB, Castenholz RW. 2006. Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiol Ecol. 57(3):470–483. doi:10.1111/j.1574-6941.2006.00134.x.
  • Ohko Y. 1997. Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A. 101(43):8057–8062. doi:10.1021/jp972002k.
  • Parchert KJ, Spilde MN, Porras-Alfaro A, et al. 2012. Fungal communities associated with rock varnish in Dark Canyon, New Mexico: casual inhabitants or essential partners? Geomicrobiol J. 29(8):752–766. doi:10.1080/01490451.2011.619636.
  • Perin MS, Fried VA, Slaughter CA, et al. 1988. The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. EMBO J. 7(9):2697.
  • Perry RS, Kolb VM. 2003. Biological and organic constituents of desert varnish: review and new hypotheses. In: Instruments, Methods, and Missions for Astrobiology, Vol. VII. Hoover R and Rozanov A editors. San Diego, USA: Planetary Science Institute, pp 202–217.
  • Pisciotta JM, Zaybak Z, Call DF, et al. 2012. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol. 78(15):5212–5219. doi:10.1128/AEM.00480-12.
  • Ramasamy RP. 2016. Photosynthetic electrochemical cells: U.S. Patent Application. 15:257.
  • Ringelberg DB, Foley KL, Reynolds CM. 2011. Electrogenic capacity and community composition of anodic biofilms in soil-based bioelectrochemical systems. Appl Microbiol Biot 90(5):1805–1815. doi:10.1007/s00253-011-3264-9.
  • Sakai N, Ebina Y, Takada K, et al. 2005. Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J Phys Chem B. 109(19):9651–9655. doi:10.1021/jp0500485.
  • Sakimoto KK, Wong AB, Yang P. 2016. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 351(6268):74–77. doi:10.1126/science.aad3317.
  • Sasaki D, Sasaki K, Tsuge Y, et al. 2016. Comparative metabolic state of microflora on the surface of the anode electrode in a microbial fuel cell operated at different pH conditions. AMB Exp. 6(1):125. doi:10.1186/s13568-016-0299-4.
  • Schneider D, Reimer A, Hahlbrock A, et al., 2015. Metagenomic and metatranscriptomic analyses of bacterial communities derived from a calcifying karst water creek biofilm and tufa. Geomicrobiol J. 32: 3–4, 316–331. doi:10.1080/01490451.2014.907376.
  • Shevela D, Nöring B, Eckert H J, et al. 2006. Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 8(29):3460–3466. doi:10.1039/B604389E.
  • Shi L, Dong H, Reguera G, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662. doi:10.1038/nrmicro.2016.93.
  • Sigler WV, Bachofen R, Zeyer J. 2003. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol. 5(7):618–627. doi:10.1046/j.1462-2920.2003.00453.x.
  • Sleutels THJA, Ter Heijne A, Buisman CJN, et al. 2012. Bioelectrochemical systems: an outlook for practical applications. ChemSusChem. 5(6):1012–1019. doi:10.1002/cssc.201100732.
  • Solibacter Shi L, Tien M, Fredrickson JK, et al. 2015. Microbial Redox Proteins and Protein Complexes for Extracellular Respiration. Redox. Proteins in Supercomplexes and Signalosomes. Boca Raton: CRC press. p187–216.
  • Shashkov A S, Streshinskaya G M, Kozlova Y I, et al. 2012. Teichulosonic acid, an anionic polymer of a new class from the cell wall of Actinoplanes utahensis VKM Ac-674 T. Biochemistry (Moscow), 77(5): 511–517.
  • Sukkasem C, Xu S, Park S, et al. 2008. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res. 42(19):4743–4750. doi:10.1016/j.watres.2008.08.029.
  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. 2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science. 330:1413–1415. doi:10.1126/science.1196526.
  • Sweeting MM. 1995. Karst in China. Physical Environment Series. Vol. 15, Berlin:Springer, pp 120–136. doi:10.1007/978-3-642-79520-6_6.
  • Tang W, Xia J, Zeng X, et al. 2014. Biological characteristics and oxidation mechanism of a new manganese-oxidizing bacteria FM-2. Bio-med Mater Eng. 24(1):703–709.
  • Tang Y, Lian B, Dong H, et al. 2012. Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou karst area (China). Geomicrobiol J. 29(3):213–225. doi:10.1080/01490451.2011.558560.
  • Van Thielen N, Garbary DJ. 2000. Life in the rocks—endolithic algae. In: Seckbach J editor. Journey to Diverse Microbial Worlds, Adaptation to Exotic Environments. Dordrecht: Kluwer, pp 245–253.
  • Walker JJ, Pace NR. 2007. Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl Environ Microbiol. 73(11):3497–3504. doi:10.1128/AEM.02656-06.
  • Wall JD, Krumholz LR. 2006. Uranium reduction. Annu Rev Microbiol. 60:149–166. doi:10.1146/annurev.micro.59.030804.121357.
  • Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. PNAS. 95(12):6578–6583. doi:10.1073/pnas.95.12.6578.
  • Zhang J, Yang G Q, Zhou S, et al. 2013. Fontibacter ferrireducens sp. nov., an Fe (III)-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Micro. 63(3):925–929. doi:10.1099/ijs.0.040998-0.
  • Zhu H, He X, Wang K, et al. 2012. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. Eur J Soil Biol. 51:1–7. doi:10.1016/j.ejsobi.2012.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.