297
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The Ability of Basalt to Leach Nutrients and Support Growth of Cupriavidus metallidurans CH34 Depends on Basalt Composition and Element Release

ORCID Icon, , ORCID Icon, &
Pages 438-446 | Received 29 Jun 2017, Accepted 10 Oct 2017, Published online: 15 Feb 2018

References

  • Aiuppa A, Allard P, D'alessandro W, Michel A, Parello F, Treuil M, Valenza M. 2000. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochimica et Cosmochimica Acta. 64:1827–1841. doi:10.1016/S0016-7037(00)00345-8.
  • Baranyi J, Roberts TA. 1994. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 23:277–294. doi:10.1016/0168-1605(94)90157-0.
  • Barker W, Welch S, Chu S, Banfield J. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral. 83:1551–1563. doi:10.2138/am-1998-11-1243.
  • Bennett P, Rogers J, Choi W, Hiebert F. 2001. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J. 18:3–19. doi:10.1080/01490450151079734.
  • Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T. 2007a. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol. 73:3283–3290. doi:10.1128/AEM.02750-06.
  • Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. 2007b. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol. 73:3283–3290. doi:10.1128/AEM.02750-06.
  • Berney M, Vital M, Hülshoff I, Weilenmann H-U, Egli T, Hammes F. 2008. Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res. 42:4010–4018. doi:10.1016/j.watres.2008.07.017.
  • Bryce C, Byloos B, Leys N, Cockell CS. 2016. Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environ Microbiol. 18(4):1110–1121. doi:10.1111/1462-2920.13093.
  • Burdige DJ, Dhakar SP, Nealson KH. 1992. Effects of manganese oxide mineralogy on microbial and chemical manganese reduction. Geomicrobiol J. 10:27–48. doi:10.1080/01490459209377902.
  • Buysschaert B, Byloos B, Leys N, Van Houdt R, Boon N. 2016. Reevaluating multicolor flow cytometry to assess microbial viability. Appl Microbiol Biotechnol. 1–15.
  • Byloos B, Coninx I, Van Hoey O, Cockell C, Nicholson N, Ilyin V, Van Houdt R, Boon N, Leys N. 2017. The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with basalt, a volcanic moon analog rock. Front. Microbiol. 8:671. doi:10.3389/fmicb.2017.00671.
  • Cockell CS, Olsson K, Knowles F, Kelly L, Herrera A, Thorsteinsson T, Marteinsson V. 2009. Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J. 26:491–507. doi:10.1080/01490450903061101.
  • Cornelis P, Andrews SC. 2010. Iron Uptake and Homeostasis in Microorganisms. Norfolk, UK: Horizon Scientific Press.
  • Dessert C, Dupré B, Gaillardet J, François LM, Allegre CJ. 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol. 202:257–273. doi:10.1016/j.chemgeo.2002.10.001.
  • Diels L, Van Roy S, Somers K, Willems I, Doyen W, Mergeay M, Springael D, Leysen R. 1995. The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics. J Membr Sci. 100:249–258. doi:10.1016/0376-7388(94)00253-U.
  • Dong H. 2010. Mineral-microbe interactions: a review. Front Earth Sci China. 4:127–147. doi:10.1007/s11707-010-0022-8.
  • Dupré B, Dessert C, Oliva P, Goddéris Y, Viers J, François L, Millot R, Gaillardet J. 2003. Rivers, chemical weathering and Earth's climate. Comptes Rendus Geosci. 335:1141–1160. doi:10.1016/j.crte.2003.09.015.
  • Eggleton RA, Foudoulis C, Varkevisser D. 1987. Weathering of basalt: changes in rock chemistry and mineralogy. Clays Clay Miner. 35:161–169. doi:10.1346/CCMN.1987.0350301.
  • Frossard E, Brossard M, Hedley MJ, Metherel A. 1995. Reactions Controlling the Cycling of P in Soils. In: Phosphorus in the Global Environment: Transfers, Cycles and Management. H. Tiessen (ed.). pp: 107–38. John Wiley & Sons, New York.
  • Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 156:609–643. doi:10.1099/mic.0.037143-0.
  • Gaillardet J, Dupre B, Allegre CJ, Négrel P. 1997. Chemical and physical denudation in the Amazon River Basin. Chem Geol. 142:141–173. doi:10.1016/S0009-2541(97)00074-0.
  • Garrels RM, Mackenzie FT. 1971. Evolution of sedimentary rocks. W. W. Norton & Co., New York. 397 pg.
  • Gauthier D, Søbjerg LS, Jensen KM, Lindhardt AT, Bunge M, Finster K, Meyer RL, Skrydstrup T. 2010. Environmentally benign recovery and reactivation of palladium from industrial waste by using gram‐negative bacteria. ChemSusChem. 3:1036–1039. doi:10.1002/cssc.201000091.
  • Gottschalk G. 2012. Bacterial metabolism. Springer Science & Business Media. New York. 81 pg.
  • Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y, Pontes MH. 2013. Bacterial Mg2+ homeostasis, transport, and virulence. Ann Rev Genet. 47:625–646. doi:10.1146/annurev-genet-051313-051025.
  • Gudbrandsson S, Wolff-Boenisch D, Gislason SR, Oelkers EH. 2011. An experimental study of crystalline basalt dissolution from 2⩽ pH⩽ 11 and temperatures from 5 to 75° C. Geochim Cosmochim Acta. 75:5496–5509. doi:10.1016/j.gca.2011.06.035.
  • Hall K, Lindgren BS, Jackson P. 2005. Rock albedo and monitoring of thermal conditions in respect of weathering: some expected and some unexpected results. Earth Surf Processes Landforms. 30:801–812. doi:10.1002/esp.1189.
  • Jansson M. 1988. Phosphate uptake and utilization by bacteria and algae. Hydrobiologia. 170:177–189. doi:10.1007/BF00024904.
  • Kelly L, Colin Y, Turpault M, Uroz S. 2016. Mineral type and solution chemistry affect the structure and composition of actively growing bacterial communities as revealed by Bromodeoxyuridine Immunocapture and 16S rRNA pyrosequencing. Microb Ecol. 72:428–442. doi:10.1007/s00248-016-0774-0.
  • Kelly LC, Cockell CS, Herrera-Belaroussi A, Piceno Y, Andersen G, Desantis T, Brodie E, Thorsteinsson T, Marteinsson V, Poly F. 2011. Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microb Ecol. 62:69–79. doi:10.1007/s00248-011-9864-1.
  • Kelly LC, Cockell CS, Piceno YM, Andersen GL, Thorsteinsson T, Marteinsson V. 2010. Bacterial diversity of weathered terrestrial Icelandic volcanic glasses. Microb Ecol. 60:740–752. doi:10.1007/s00248-010-9684-8.
  • Kirsten A, Herzberg M, Voigt A, Seravalli J, Grass G, Scherer J, Nies DH. 2011. Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34. J Bacteriol. 193:4652–4663. doi:10.1128/JB.05293-11.
  • Ledrich M-L, Stemmler S, Laval-Gilly P, Foucaud L, Falla J. 2005. Precipitation of silver-thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34. Biometals. 18:643–650. doi:10.1007/s10534-005-3858-8.
  • Louvat P, Allègre CJ. 1997. Present denudation rates on the island of Reunion determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochim Cosmochim Acta. 61:3645–3669. doi:10.1016/S0016-7037(97)00180-4.
  • Marshall K. 1975. Clay mineralogy in relation to survival of soil bacteria. Ann Rev Phytopathol. 13:357–373. doi:10.1146/annurev.py.13.090175.002041.
  • Mergeay M, Nies D, Schlegel H, Gerits J, Charles P, Van Gijsegem F. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol. 162:328–334.
  • Nebe-Von-Caron G, Stephens P, Hewitt C, Powell J, Badley R. 2000. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods. 42:97–114. doi:10.1016/S0167-7012(00)00181-0.
  • Nesbitt H, Wilson R. 1992. Recent chemical weathering of basalts. Am J Sci. 292:740–777. doi:10.2475/ajs.292.10.740.
  • Oelkers EH, Gislason SR. 2001. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25 C and pH = 3 and 11. Geochim Cosmochim Acta. 65:3671–3681. doi:10.1016/S0016-7037(01)00664-0.
  • Olsson-Francis K, Van Houdt R, Mergeay M, Leys N, Cockell CS 2010. Microarray analysis of a microbe-mineral interaction. Geobiology. 8:446–456. doi:10.1111/j.1472-4669.2010.00253.x.
  • Olsson-Francis K, Simpson A, Wolff-Boenisch D, Cockell C. 2012. The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology. 10:434–444. doi:10.1111/j.1472-4669.2012.00333.x.
  • Passanha P, Esteves SR, Kedia G, Dinsdale RM, Guwy AJ. 2013. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors. Bioresour Technol. 147:345–352. doi:10.1016/j.biortech.2013.08.050.
  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B. 2009. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Nat Acad Sci. 106:17757–17762. doi:10.1073/pnas.0904583106.
  • Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD, Concepcion RN, Ohta H. 2006. Cupriavidus pinatubonensis sp. nov. and Cupriavidus laharis sp. nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. Int J Syst Evol Microbiol. 56:973–978. doi:10.1099/ijs.0.63922-0.
  • Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J. 2013. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences. 10:3983–3996. doi:10.5194/bg-10-3983-2013.
  • SLMB. 2012. Determining the total cell count and ratios of high and low nucleic acid content cells in freshwater using flow cytometry.. Switzerland: Federal Office of Public Health.
  • Staudigel H, Furnes H, Mcloughlin N, Banerjee NR, Connell LB, Templeton A. 2008. 3.5 billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth-Sci. Rev. 89:156–176. doi:10.1016/j.earscirev.2008.04.005.
  • Stockmann GJ, Wolff-Boenisch D, Gislason SR, Oelkers EH. 2011. Do carbonate precipitates affect dissolution kinetics? 1: Basaltic glass. Chem Geol. 284:306–316. doi:10.1016/j.chemgeo.2011.03.010.
  • Stolz JF, Oremland RS. 2011. Microbial Metal and Metalloid Metabolism: Advances and Applications. Washington DC: American Society for Microbiology Press.
  • Stroncik NA, Schmincke HU. 2001. Evolution of palagonite: crystallization, chemical changes, and element budget. Geochem Geophys Geosyst. 2: 2000GC000102
  • Sudek LA, Wanger G, Templeton AS, Staudigel H, Tebo BM. 2017. Submarine basaltic glass colonization by the heterotrophic Fe (II)-oxidizing and siderophore-producing deep-sea bacterium pseudomonas stutzeri VS-10: the potential role of basalt in enhancing growth. Front Microbiol. 8.
  • Van Nevel S, Koetzsch S, Weilenmann H-U, Boon N, Hammes F. 2013. Routine bacterial analysis with automated flow cytometry. J Microbiol Methods. 94:73–76. doi:10.1016/j.mimet.2013.05.007.
  • Veal D, Deere D, Ferrari B, Piper J, Attfield P. 2000. Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods. 243:191–210. doi:10.1016/S0022-1759(00)00234-9.
  • Welch S, Taunton A, Banfield J. 2002. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J. 19:343–367. doi:10.1080/01490450290098414.
  • Welch SA, Banfield JF. 2002. Modification of olivine surface morphology and reactivity by microbial activity during chemical weathering. Geochim Cosmochim Acta. 66:213–221. doi:10.1016/S0016-7037(01)00771-2.
  • Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV. 2004. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta. 68:4843–4858. doi:10.1016/j.gca.2004.05.027.
  • Wu L, Jacobson AD, Chen H-C, Hausner M. 2007. Characterization of elemental release during microbe–basalt interactions at T = 28°C. Geochim Cosmochim Acta. 71:2224–2239. doi:10.1016/j.gca.2007.02.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.