104
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Variations in the Properties of Extractable “Humic Matter” and Associated Kerogen in Sediments through Geologic Time: Their Significance for Precambrian Biological Evolution and Paleoecology

Pages 334-353 | Received 24 Jan 2017, Accepted 01 Nov 2017, Published online: 12 Jan 2018

References

  • Abelson PH. 1967. Conversion of biochemical to kerogen and n-paraffins. In: Abelson PH, editor. Researches in Geochemistry. Vol. 2, New York: John Wiley & Sons, p. 63–86.
  • Altermann W, Kazmierczak J. 2003. Archean microfossils: a reappraisal of early life on Earth. Res Microbiol. 154:611–617.
  • Amthor JE, Grotzinger JP, Schröder S, Bowring SA, Ramezani J, Martin MW, Matter A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology. 31:431–434.
  • Arnaud E, Halverson GP, Shields-Zhou G. 2011. The geological record of Neoproterozoic ice ages. Geol Soc Lond Mem. 36:1–16.
  • Awramik SM. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science. 174:825–826.
  • Bekker A, Holland HD, Wang P-L, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ. 2004. Dating the rise of atmospheric oxygen. Nature. 427:117–120.
  • Blumer M. 1965. Organic pigments: their long-term fate. Science. 149:722–726.
  • Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R. 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol. 47:471–481.
  • Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF. 2012. An Archean heavy bombardment from a destabilized extension of the asteroid belt. Nature. 485:78–81.https://doi.org/10.1038/nature10967
  • Brasier M, McLoughlin N, Green O, Wacey D. 2006. A fresh look at the fossil evidence for early Archean cellular life. Philos Trans R Soc B. 361:887–902.https://doi.org/10.1098/rstb.2006.1835
  • Brocks JJ. 2011. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?. Geochim Cosmochim Acta. 75:3196–3213.
  • Brocks JJ, Jarrett AJM, Sirantoine E, Kenig F, Moczdłowska M, Porter S, Hope J. 2016. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology. 14:129–149.https://doi.org/10.1111/gbi.12165
  • Brocks JJ, Logan GA, Buick R, Summons RE. 1999. Archean molecular fossils and the early rise of eukaryotes. Science. 285:1033–1036.
  • Budd GE. 2008. The earliest fossil record of the animals and its significance. Philos Trans R Soc B: Biol Sci. 363:1425–1434.
  • Buick R. 2008. When did oxygenic photosynthesis evolve?. Philos Trans R Soc B: Biol Sci. 363:2731–2743.
  • Byerly GR, Kröner A, Lowe DR, Todt W, Walsh MM. 1996. Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree groups. Precambrian Res. 78:125–138.
  • Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A-C, El Albani A. 2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. Proc Nat Acad Sci USA (PNAS). 110:16736–16741.
  • Chen Y, Senesi N, Schnitzer M. 1977. Information provided on humic substances by E4/ E6 ratios. Soil Sci Soc Am J. 41:352–358.
  • Cloud P. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology. 2:351–387.
  • Cohen PA, Macdonald FA. 2015. The Proterozoic record of eukaryotes. Paleobiology. 41:610–632.
  • Degens ET. 1969. Biogeochemistry of stable carbon isotopes. In: Eglinton G, Murphy MTJ, editors. Organic geochemistry. Berlin: Springer-Verlag, p. 304–329.
  • Dymek RF, Klein C. 1988. Chemistry, petrology and origin of banded iron formation lithologies from the 3800 Ma Isua supracrustal belt, west Greenland. Precambrian Res. 39:247–302.
  • Ertel JR, Hedges JI. 1983. Bulk chemical and spectroscopic properties of marine and terrestrial humic acids, melanoidins and catechol-based synthetic polymers. In: Christman RF, Gjessing ET, editors. Aquatic and Terrestrial Humic Materials. Ann Arbor: Ann Arbor Science (the Butterworth Group), p. 143–163.
  • Fike DA, Grotzinger JP, Pratt LM, Summons RE. 2006. Oxidation of the Ediacaran ocean. Nature. 444:744–747.
  • Fralick P, Davis DW, Kissin SA. 2002. The age of the Gunflint Formation, Ontario, Canada: single zircon U-Pb age determinations from reworked volcanic ash. Can J Earth Sci. 39:1085–1091.
  • French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshino Y, Peters CA, George SC, Love GD, Brocks JJ, Buick R, Summons RE. 2015. Reappraisal of hydrocarbon biomakers in Archean rocks. Proc Nat Acad Sci. 112: 5915–5920.
  • Garrett P. 1970. Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science. 169:171–173.
  • Glaessner MF. 1984. The Dawn of Animal Life. Cambridge: Cambridge University Press.
  • Glikson AY. 2005. Geochemical signatures of Archean to early Proterozoic maria-scale oceanic impact basins. Geology. 33:125–128.
  • Gogarten-Boekels M, Hilario E, Gogarten JP. 1995. The effects of heavy meteorite bombardment on the early evolution—the emergence of the three domains of life. Orig Life Evol Biosphys. 25:251–264.
  • Graham LE, Graham JM, Wilcox LW. 2009. Algae, 2nd ed. San Francisco: Benjamin Cummings.
  • Grotzinger JP, Bowring SA, Saylor BZ, Kaufman AJ. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science. 270:598–604.https://doi.org/10.1126/science.270.5236.598
  • Hoering TC. 1965. The extractable organic matter in Precambrian rocks and the problem of contamination. Carnegie Inst Year Book. 64:215–218.
  • Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B: Biol Sci. 361:903–915.https://doi.org/10.1098/rstb.2006.1838
  • Horodyski RJ, Knauth LP. 1994. Life on land in the Precambrian. Science. 263:494–498.https://doi.org/10.1126/science.263.5146.494
  • Hsu KJ, Oberhänsli H, Gao JY, Sun S, Chen H, Krähenbühl U. 1985. “Strangelove ocean” before the Cambrian explosion. Nature. 316:809–811.
  • Jackson TA. 1967. Fossil actinomycetes in middle Precambrian glacial varves. Science. 155:1003–1005.
  • Jackson TA. 1971. Carbonaceous inclusions, sulfides, and “fossil gas bubbles” of presumably biologic origin associated with rafted erratics in Huronian (Precambrian) glacial-lake argillites. J Sediment Petrol. 41:313–315.
  • Jackson TA. 1973. “Humic” matter in the bitumen of ancient sediments: variations through geologic time. Geology. 1:163–166.
  • Jackson TA. 1975. “Humic” matter in the bitumen of pre-Phanerozoic and Phanerozoic sediments and its paleobiological significance. Am J Sci. 275:906–953.
  • Jackson TA. 1977. A relationship between crystallographic properties of illite and chemical properties of extractable organic matter in pre-Phanerozoic and Phanerozoic sediments. Clays Clay Miner. 25:187–195.https://doi.org/10.1346/CCMN.1977.0250303
  • Jackson TA. 2015a. Ultraviolet radiation-absorbing “humic pigments” of cyanobacteria in microbial mats: their presumptive photoprotective function and relevance to early Precambrian microbial ecology and evolution. Geomicrobiol J. 32:420–432.
  • Jackson TA. 2015b. Variations in the abundance of photosynthetic oxygen through Precambrian and Paleozoic time in relation to biotic evolution and mass extinctions: evidence from Mn/Fe ratios. Precambrian Res. 264:30–35.
  • Jackson TA, Fritz P, Drimmie R. 1978. Stable carbon isotope ratios and chemical properties of kerogen and extractable organic matter in pre-Phanerozoic and Phanerozoic sediments—their interrelations and possible paleobiological significance. Chem Geol. 21:335–350.
  • Jackson TA, Moore CB. 1976. Secular variations in kerogen structure and carbon, nitrogen, and phosphorus concentrations in pre-Phanerozoic and Phanerozoic sedimentary rocks. Chem Geol. 18:107–136.
  • Jackson TA, Vlaar S, Nguyen N, Leppard GG, Finan TM. 2015. Effects of bioavailable heavy metal species, arsenic, and acid drainage from mine tailings on a microbial community sampled along a pollution gradient in a freshwater ecosystem. Geomicrobiol J. 32:724–750.
  • Jackson TA, Nguyen N, Li W-C. 2016. Effects of copper, nickel, and sulphate from the smelters at Sudbury, Ontario (Canada) on microbial communities in lakes. Geomicrobiol J. 34:400–420. doi:10.1080/01490451.2016.1204375.
  • Javaux EJ. 2007. The early eukaryotic fossil record. Adv Exp Med Biol. 607:1–19.
  • Jensen S, Droser ML, Gehling JG. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeogr, Palaeoclimatol, Palaeoecol. 220:19–29.
  • Kaneda T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev. 55: 288–302.
  • Karsten U. 2008. Defense strategies of algae and cyanobacteria against solar ultraviolet radiation. In: Amsler CD, editor. Algal chemical ecology. Berlin: Springer-Verlag, p. 273–296.
  • Katz ME, Finkel ZV, Grzebyk D, Knoll AH, Falkowski PG. 2004. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu Rev Ecol, Evol Syst. 35:523–556.
  • Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science. 317:1900–1903.
  • Kenny R, Knauth LP. 2001. Stable isotope variations in the Neoproterozoic Beck Spring dolomite and Mesoproterozoic Mescal limestone paleokarst: implications for life on land in the Precambrian. Geol Soc Am Bull. 113:650–658.
  • Kenrick P, Crane PR. 1997. The Origin and Early Diversification of Land Plants. Washington: Smithsonian Institution Scholarly Press.
  • Kimura H, Watanabe Y. 2014. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology. 29:995–998.
  • Knoll AH. 2014. Paleobiological Perspectives on early eukaryotic evolution: Cold Spring Harbor Perspectives in Biology 2014; 6: a016121. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Koeberl C. 2006. The record of impact processes on the early Earth: a review of the first 2.5 billion years. Geol Soc Am Spec Pap. 405:1–22.
  • Komiya T, Hirata T, Kitajima K, Yamamoto S, Shibuya T, Sawaki Y, Ishikawa T, Shu D, Li Y, Han J. 2008. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res. 14:159–174.
  • Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR. 2003. Early Archean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology. 31:283–286.
  • Laflamme M, Darroch SAF, Tweedt SM, Peterson KJ, Erwin DH. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat?. Gondwana Res. 23:558–573.
  • Leo RF, Parker PL. 1966. Branched-chain fatty acids in sediment. Science. 152:649–650.https://doi.org/10.1126/science.152.3722.649
  • Logan GA, Hayes JM, Hieshima GB, Summons RE. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature. 376:53–56.
  • Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature. 457:718–721.
  • Lowe DR, Byerly GR. 1999. Stratigraphy of the west-central part of the Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR, editors. Geologic Evolution of the Barberton Greenstone Belt, South Africa. Vol. 329. Geological Society of America Special Paper. p. 1–36.
  • Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature. 506:307–315.https://doi.org/10.1038/nature13068
  • Margulis L. 1970. Origin of Eukaryotic Cells. New Haven: Yale University Press. p. 349.
  • Margulis L, Walker JCG, Rambler M. 1976. Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature. 264:620–624.
  • Martin RE, Quigg A, Podkovyrov V. 2008. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeogr, Palaeoclimatol, Palaeoecol. 258:277–291.
  • Martin RL, Winters JC, Williams JA. 1963. Distributions of n-paraffins in crude oils and their implications to origin of petroleum. Nature. 199:110–113.https://doi.org/10.1038/199110a0
  • Medvedev PV, Melezhik VA, Filippov MM. 2009. Palaeoproterozoic petrified oil field (Shunga Event). Paleontological J. 43:972–979.
  • Michelutti N, Smol JP. 2016. Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnology. 56:253–265. doi:10.1007/s10933-016-9921-3.
  • Morris SC. 1985. The Ediacarian biota and early metazoan evolution. Geol Mag. 122:77–81.
  • Morris SC. 1993. The fossil record and the early evolution of the metazoan. Nature. 361:219–225.
  • Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR. 2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. 537:535–538.
  • Oehler JH. 1977. Irreversible contamination of Precambrian kerogen by 14C-labelled organic compounds. Precambrian Res. 4:221–227.
  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Nat Acad Sci USA (PNAS). 108:13624–13629.
  • Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ. 2014. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat Geosci. 7:283–286.
  • Porter SM. 2006. The Proterozoic fossil record of heterotrophic eukaryotes. In: Xiao S, Kaufman AJ, editors. Neoproterozoic Geobiology and Paleobiology. Berlin: Springer. p. 1–21.
  • Poulton SW, Fralick PW, Canfield DE. 2004. The transition to a sulphidic ocean ∼1.84 billion years ago. Nature. 431:173–177.
  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature. 455:1101–1104.
  • Riding R. 1992. The algal breath of life. Nature. 359:13–14.
  • Rosing MT. 1999. 13C-depleted carbon microparticles in >3700 Ma sea-floor sedimentary rocks from west Greenland. Science. 283:674–676.https://doi.org/10.1126/science.283.5402.674
  • Salfeld JC. 1975. Ultraviolet and visible absorption spectra of humic systems. In: Povoledo D, Golterman HL, editors. Humic Substances: Their Structure and Function in the Biosphere (Proceedings of International Meeting, Nieuwersluis, the Netherlands, 29–31 May, 1972): Centre for Agricultural Publishing and Documentation, Wageningen. p. 269–280.
  • Schidlowski M. 1983. Evolution of photoautotrophy and early atmospheric oxygen levels. Precambrian Res. 20:319–335.https://doi.org/10.1016/0301-9268(83)90079-7
  • Schinteie R, Brocks JJ. 2014. Evidence for ancient halophiles? Testing biomarker syngeneity of evaporates from Neoproterozoic and Cambrian strata. Org Geochem. 72:46–58.
  • Schnitzer M, Khan SU. 1972. Humic Substances in the Environment. New York: Marcel Dekker.
  • Schopf JW. 2006. Fossil evidence of Archean life. Philos Trans R Soc B: Biol Sci. 361:869–885.
  • Schröder S, Grotzinger JP. 2007. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc Lond. 164:175–187.https://doi.org/10.1144/0016-76492005-022
  • Seilacher A. 1984. Late Precambrian and early Cambrian metazoan: preservational or real extinctions? In: Holland HD, Trendall AF, editors. Patterns of change in earth evolution (Dahlem Konferenzen 1984). Berlin: Springer-Verlag. p. 159–168.
  • Shorland FB. 1962. The comparative aspects of fatty acid occurrence and distribution. In: Florkin M, Mason HS, editors. Comparative Biochemistry. Vol. 3. New York: Academic Press, p. 1–102.
  • Smith FC, Glass BP, Simonson BM, Smith JP, Krull-Davatzes AE, Booksh KS. 2016. Shock-metamorphosed rutile grains containing the high-pressure polymorph TiO2-II in four Neoarchean spherule layers. Geology. 44:775–778.https://doi.org/10.1130/G38327.1
  • Smith JW, Schopf JW, Kaplan IR. 1970. Extractable organic matter in Precambrian cherts. Geochim Cosmochim Acta. 34:659–675.
  • Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science. 255:952–959.
  • Stevenson FJ. 1982. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons.
  • Strauss H, Melezhik VA, Lepland A, Fallick AE, Hanski EJ, Filippov MM, Deines YE, Illing CJ, Črne AE, Brasier AT. 2013. Enhanced accumulation of organic matter: the Shunga event. In: Melezhik VA, Prave AR, Hanski EJ, Fallick AE, Lepland A, Kump LR, Strauss H, editors. Reading the Archive of Earth's Oxygenation: Global Events and the Fennoscandian Arctic Russia – Drilling Early Earth Project: Frontiers in Earth Sciences Series. Berlin: Springer-Verlag. p. 1195–1273.
  • Teyssèdre B. 2006. Are the green algae (phylum Viridiplantae) two billion years old? Carnets de Géologie (Notebooks on Geology), Brest, Article 2006/03 (CG2006_A03).
  • Teyssèdre B. 2007. Precambrian palaeontology in the light of molecular phylogeny—an example: the radiation of the green algae. Biogeosci Discuss. 4:3123–3142.
  • Thiel V, Jenisch A, Wörheide G, Löwenberg A, Reitner J, Michaelis W. 1999. Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids?. Org Geochem. 30:1–14.https://doi.org/10.1016/S0146-6380(98)00200-9
  • Watanabe Y, Martini JEJ, Ohmoto H. 2000. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature. 408:574–578.
  • Wille M, Nägler TF, Lehmann B, Schröder S, Kramers JD. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature. 453:767–769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.