402
Views
32
CrossRef citations to date
0
Altmetric
Articles

Diversity of Prokaryotic Communities Indigenous to Acid Mine Drainage and Related Rocks from Baiyin Open-Pit Copper Mine Stope, China

, , , , , & show all
Pages 580-600 | Received 31 Jul 2017, Accepted 17 Jan 2018, Published online: 01 Mar 2018

References

  • Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF. 2007. Genome dynamics in a natural archaeal population. Proc Natl Acad Sci U.S.A 104:1883–1888. https://doi.org/10.1073/pnas.0604851104.
  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C. 1974. Chemical analysis of ecological materials. Blackwell Scientific Publications.
  • Anderson I, Chertkov O, Chen A, Saunders E, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF. 2012. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)). Stand Genomic Sci 6:1–13. https://doi.org/10.4056/sigs.2736042.
  • Bacelar NP, Johnson DB. 1999. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590.
  • Baker B, Banfield J. 2003. Microbial communities in acid mine drainage. FEMS Microbiol Rev 44:139–152. https://doi.org/10.1016/S0168-6496(03)00028-X.
  • Baker C, Dopson M. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15(4):165–171. https://doi.org/10.1016/j.tim.2007.02.005.
  • Barton LL, Fauque GD. 2009. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98. https://doi.org/10.1016/S0065-2164(09)01202-7.
  • Bond PL, Banfield JF. 2001. Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb Ecol 41:149–161.
  • Bond PL, Druschel GK, Banfield JF. 2000a. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66(11):4962–4971. https://doi.org/10.1128/AEM.66.11.4962-4971.2000.
  • Bond PL, Smriga SP, Banfield JF. 2000b. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66(9):3842–3849. https://doi.org/10.1128/AEM.66.9.3842-3849.2000.
  • Bonnefoy V, Holmes DS. 2012. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611. https://doi.org/10.1111/j.1462-2920.2011.02626.x.
  • Breuker A, Blazejak A, Bosecker K, Schippers A. 2009. Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. Adv Mater Res 73:47–50. https://doi.org/10.4028/www.scientific.net/AMR.71-73.47.
  • Bruins MR, Kapil S, Oehme FW. 2000. Microbial resistance to metals in the environment. Ecotox Environ Safe 45(3):198–207. https://doi.org/10.1006/eesa.1999.1860.
  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC. 2006. Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoules, France. Appl Environ Microbiol 72:551–556. https://doi.org/10.1128/AEM.72.1.551-556.2006.
  • Bryant RD, McGroarty KM, Costerton JW, Laishley EJ. 1983. Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis). Can J Microbiol 29(9):1159–1170. https://doi.org/10.1139/m83-178.
  • Cabrera G, Perez R, Gomez JM, Abalos A, Cantero D. 2006. Toxic effects of dissolved heavy metals on Desulfo vibriovulgaris and Desulfovibrio sp. strains. J Hazard Mater 135:40–46. https://doi.org/10.1016/j.jhazmat.2005.11.058.
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. https://doi.org/10.1073/pnas.1000080107.
  • Cha JM, Cha WS, Lee JH. 1999. Removal of organosulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing bacteria. Process Biochem 34:659–665. https://doi.org/10.1016/S0032-9592(98)00139-3.
  • Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS. 2015. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J 9:1579–1592. https://doi.org/10.1038/ismej.2014.245.
  • Chen LX, Huang LN, Méndez-García C, Kuang JL, Hua ZS, Liu J, Shu WS. 2016. Microbial communities, processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol 38:150–158. https://doi.org/10.1016/j.copbio.2016.01.013.
  • Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS. 2013. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15(9):2431–2444. https://doi.org/10.1111/1462-2920.12114.
  • Chen YT, Li JT, Chen LX, Hua ZS, Huang LN, Liu J, Xu BB, Liao B, Shu WS. 2014. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environ Sci Technol 48:5537–5545. https://doi.org/10.1021/es500154z.
  • Denef VJ, Mueller RS, Banfield JF. 2010. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4:599–610. https://doi.org/10.1038/ismej.2009.158.
  • Dew DW, Muhlbauer R, van Buuren C. 1999. Bioleaching of copper sulphide concentrates with mesophiles and thermophiles. In Alta Copper, 99, Brisbane, Australia.
  • Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg KB. 2007. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9:298–307. https://doi.org/10.1111/j.1462-2920.2006.01138.x.
  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL. 2004. Characterization of ferroplasma isolates and ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088. https://doi.org/10.1128/AEM.70.4.2079-2088.2004.
  • Dopson M, Johnson DB. 2012. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631. https://doi.org/10.1111/j.1462-2920.2012.02749.x.
  • Edwards KJ, Bond PL, Gihring TM, Banfield JF. 2000. Anarchaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799. https://doi.org/10.1126/science.287.5459.1796.
  • Edwards KJ, Brett M, Goebel TM, Rodgers MO, Schrenk TM, Gihring MM, Cardona MM, Mcguire RJ, Hamers NR, Jillian FB. 1999. Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California.” Geomicrobiol J 16:155–179. https://doi.org/10.1080/014904599270668.
  • Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmud G, Baliczunic T, Hollesen J, Hanson S, Jansson PE. 2007. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol 41:2407–2413. https://doi.org/10.1021/es061457x.
  • Fabisch M, Beulig F, Akob DM, Küsel K. 2013. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations. Front. Microbiol 4:390. https://doi.org/10.3389/fmicb.2013.00390.
  • Falaga NC, Johnson DB. 2014. Acidibacter ferrireducens gen. nov., sp. nov.: An acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18:1067–1073. https://doi.org/10.1007/s00792-014-0684-3.
  • Falaga NC, Johnson DB. 2015. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron-and sulfur-metabolizing extreme acidophile. Int J Syst Evol Microbiol 66:206–211.
  • Fortin D, Roy M, Rioux J, Thibault P. 2000. Occurrence of sulfate- reducing bacteria under a wide range of physico-chemical conditions in Au and Cu-Zn mine tailings. FEMS Microbiol Ecol 33:197–208.
  • Fowler TA, Holmes PR, Crundwell FK. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–5292.
  • Franke S, Rensing C. 2007. Acidophiles: mechanisms to tolerate metal and acid toxicity. In: Gerday C, Glansdorff N, editors. Physiology and Biochemistry of Extremophiles. Washington, DC: ASM Press, p. 271–277.
  • Friedrich MW. 2005. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17(1):59–66. https://doi.org/10.1016/j.copbio.2005.12.003.
  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH. 2008. A latitudinal diversity gradient in planktonic marine bacteria. P Natl Acad Sci USA 105:7774–7778. https://doi.org/10.1073/pnas.0803070105.
  • Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad Sci USA 106:22427–22432. https://doi.org/10.1073/pnas.0908284106.
  • Garcia MA, Austnes AE, Lanzén A, González-Toril E, Aguilera Á, Øvreås L. 2015. Novel and unexpected microbial diversity in acid mine drainage in Svalbard (78° N), revealed by culture-independent approaches. Microorganisms 3(4):667–694. https://doi.org/10.3390/microorganisms3040667.
  • Giloteaux L, Duran R, Casiot C, Bruneel O, Elbaz-Poulichet F, Goni- Urriza M. 2013. Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiol Ecol 83:724–737. https://doi.org/10.1111/1574-6941.12028.
  • Goltsman DSA, Comolli LR, Thomas BC, Banfield JF. 2015. Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J 9:1014–1023. https://doi.org/10.1038/ismej.2014.200.
  • Goltsman DSA, Dasari M, Thomas BC, Shah MB, VerBerkmoes NC, Hettich RL, Banfield JF. 2013. New group in the Leptospirillum clade: cultivation-independent community genomics, proteomics, and transcriptomics of the new species ‘‘Leptospirillum group IV UBA BS.” Appl Environ Microbiol 79:5384–5393. https://doi.org/10.1128/AEM.00202-13.
  • Goltsman DSA, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS, Dick GJ, Sun CL, Wheeler KE, Zemla A. 2009. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing ‘‘Leptospirillum rubarum” (Group II) and ‘‘Leptospirillum ferrodiazotrophum” (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 75:4599–4615. https://doi.org/10.1128/AEM.02943-08.
  • Golyshina OV. 2011. Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae. Appl Environ Microbiol 77:5071–5078. https://doi.org/10.1128/AEM.00726-11.
  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ER, Abraham WR. 2000. Ferroplasma acidiphilum gen. nov., sp.nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasma ceaefam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006. https://doi.org/10.1099/00207713-50-3-997.
  • Golyshina OV, Timmis KN. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288. https://doi.org/10.1111/j.1462-2920.2005.00861.x.
  • Gonzalez TE, Aguilera A, Souza-Egipsy V, L_opez Pamo E, S_anchez Espa∼na J, Amils R. 2011. Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77:2685–2694. https://doi.org/10.1128/AEM.02459-10.
  • Gonzalez TE, Llobet-Brossa E, Casamayor EO, Amann R, Amils R. 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69(8):4853–4865. https://doi.org/10.1128/AEM.69.8.4853-4865.2003.
  • Hallbeck L, Pedersen K. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J. General Microbiol 136:1675–1680. https://doi.org/10.1099/00221287-136-9-1675.
  • Hallberg KB. 2010. New perspectives in acid mine drainage microbiology. Hydrometallurgy 104(3–4):448–453. https://doi.org/10.1016/j.hydromet.2009.12.013.
  • Hallbergh KB, Johnson DB. 2001. Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84. https://doi.org/10.1016/S0065-2164(01)49009-5.
  • He Y, Zhou BJ, Deng GH, Jiang XT, Zhang H, Zhou HW. 2013. Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons. BMC Microbiol 13(1):208. https://doi.org/10.1186/1471-2180-13-208.
  • Hedrich S, Johnson DB. 2013. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. Int J Syst Evol Microbiol 63:4018–4025. https://doi.org/10.1099/ijs.0.049759-0.
  • Hirooka S, Higuchi S, Uzuka A, Nozaki H, Miyagishima SY. 2014. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH. PloS one 9(9):e107702. https://doi.org/10.1371/journal.pone.0107702.
  • Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ. 2015. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J 9(6):1280–1294. https://doi.org/10.1038/ismej.2014.212.
  • Huang LN, Zhou WH, Hallberg KB, Wan C, Li J, Shu WS. 2011. Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage. Appl Environ Microbiol 77(15):5540–5544. https://doi.org/10.1128/AEM.02458-10.
  • Huber JA, Morrison HG, Huse SM, Neal PR, Sogin M L, Mark Welch DB. 2009. Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ Microbiol 11(5):1292–1302. https://doi.org/10.1111/j.1462-2920.2008.01857.x.
  • Huse SM, Welch DM, Morrison HG, Sogin ML. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898. https://doi.org/10.1111/j.1462-2920.2010.02193.x.
  • Joe SJ, Suto K, Inoie C, Chida T. 2007. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant. J Biosci Bioeng 104:117–123. https://doi.org/10.1263/jbb.104.117.
  • Johnson DB. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 23:205–218. https://doi.org/10.1016/0167-7012(95)00015-D.
  • Johnson DB, Ghauri MA, Said MF. 1992. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron. Appl Environ Microbiol 58(5):1423–1428.
  • Johnson DB, Hallberg KB. 2003. The microbiology of acidic mine waters. Res Microbiol 154(7):466–473. https://doi.org/10.1016/S0923-2508(03)00114-1.
  • Johnson DB, Hallberg KB. 2005. Acid mine drainage remediation options: a review. Sci Tot Environ 338:3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002.
  • Johnson DB, Hallberg KB. 2008. Carbon, iron and sulfur metabolism in acidophilic microorganisms. Adv Microb Physiol 54:201–255. https://doi.org/10.1016/S0065-2911(08)00003-9.
  • Johnson DB, Kanao T, Hedrich S. 2012. Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96. https://doi.org/10.3389/fmicb.2012.00096.
  • Johnson DB, Rolfe S, Hallberg KB, Iversen E. 2001. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637. https://doi.org/10.1046/j.1462-2920.2001.00234.x.
  • Johnson SS, Chevrette MG, Ehlmann BL, Benison KC. 2015. Insights from the metagenome of an acid Salt Lake: the role of biology in an extreme depositional environment. PLoS One 10(4):e122869. https://doi.org/10.1371/journal.pone.0122869.
  • Jones RM, Johnson DB. 2015. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron. Res Microbiol 166:111–120. https://doi.org/10.1016/j.resmic.2015.01.003.
  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3(4):442–453. https://doi.org/10.1038/ismej.2008.127.
  • Justice NB, Li Z, Wang Y, Spaudling SE, Mosier AC, Hettich RL, Pan C, Banfield JF. 2014. 15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity. Environ Microbiol 16:3224–3237. https://doi.org/10.1111/1462-2920.12488.
  • Kock D, Schippers A. 2006. Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy 83(1–4):167–175. https://doi.org/10.1016/j.hydromet.2006.03.022.
  • Kock D, Schippers A. 2008. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol 74(16):5211–5219. https://doi.org/10.1128/AEM.00649-08.
  • Kolmert A, Wikström P, Hallberg KB. 2000. A Fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol. Meth 41:179–184. https://doi.org/10.1016/S0167-7012(00)00154-8.
  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS. 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050. https://doi.org/10.1038/ismej.2012.139.
  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. https://doi.org/10.1111/j.1462-2920.2009.02051.x.
  • Lauber CL, Hamady M, Knight R, Fierer N. 2009. Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing- based assessment. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09.
  • Lear G, Niyogi D, Harding J, Dong Y, Lewis G. 2009. Biofilm bacterial community structure in streams affected by acid mine drainage. Appl Environ Microbiol 75:3455–3460. https://doi.org/10.1128/AEM.00274-09.
  • Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Dopson M. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 91(4). https://doi.org/10.1093/femsec/fiv011.
  • Liu H, Yin H, Dai Y, Dai Z, Liu Y, Li Q, Jiang H, Liu X. 2011. The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation. Arch Microbiol 193:857–866. https://doi.org/10.1007/s00203-011-0723-8.
  • Mendez GC, Mesa V, Sprenger RR, Richter M, Diez MS, Solano J, Bargiela R, Golyshina OV, Manteca A, Ramos JL. 2014. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J 8:1259–1274. https://doi.org/10.1038/ismej.2013.242.
  • Mendez GC, Pela´ ez AI, Mesa V, Sa´ nchez J, Golyshina OV, Ferrer M. 2015. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475.
  • Miller SR, Strong AL, Jones KL, Ungerer MC. 2009. Barcoded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572. https://doi.org/10.1128/AEM.02792-08.
  • Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabé M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E. 2011. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13(6):1433–1453. https://doi.org/10.1111/j.1462-2920.2011.02444.x.
  • Moreau JW, Zierenberg RA, Banfield JF. 2010. Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl Environ Microbiol 76:4819–4828. https://doi.org/10.1128/AEM.03006-09.
  • Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, VerBerkmoes NC. 2011. Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ Microbiol 13:2279–2292. https://doi.org/10.1111/j.1462-2920.2011.02486.x.
  • Nan Z, Li J, Zhang J, Cheng G. 2002. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Sci Total Environ 285(1):187–195. https://doi.org/10.1016/S0048-9697(01)00919-6.
  • Okabayashi A, Wakai S, Kanao T, Sugio T, Kamimura K. 2005. Diversity of 16S ribosomal DNA-defined bacterial population in acid rock drainage from Japanese pyrite mine. J Biosci Bioeng 100(6):644–652. https://doi.org/10.1263/jbb.100.644.
  • Peccia J, Marchand EA, Silverstein J, Hernandez M. 2000. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium. Appl Environ Microbiol 66:3065–3040. https://doi.org/10.1128/AEM.66.7.3065-3072.2000.
  • Pracejus B, Al-Ansari A, Al-Battashi H. 2017. Cyanobacterial mineralisation of posnjakite (Cu4 (SO4)(OH) 6· H2O) in Cu-rich acid mine drainage at Yanqul, northern Oman. Chem Erde-Geochem 77(3):535–544.
  • Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM, Sloan WT. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6(9):639–641. https://doi.org/10.1038/nmeth.1361.
  • Quince C, Lanzen A, Davenport R, Turnbaugh P. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38. https://doi.org/10.1186/1471-2105-12-38.
  • Rawlings DE, Johnson DB. 2007. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324. https://doi.org/10.1099/mic.0.2006/001206-0.
  • Reeder J, Knight R. 2009. The ‘rare biosphere’: A reality check. Nat Methods 6:636–637. https://doi.org/10.1038/nmeth0909-636.
  • Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38(1):525–552. https://doi.org/10.1146/annurev.genet.38.072902.091216.
  • Rojas C, Gutierrez RM, Bruns MA. 2016. Bacterial and eukaryal diversity in soils forming from acid mine drainage precipitates under reclaimed vegetation and biological crusts. Appl Soil Ecol 105:57–66. https://doi.org/10.1016/j.apsoil.2016.03.012.
  • Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature 409:1092–1101. https://doi.org/10.1038/35059215.
  • Rowe OF, Sanchez-Espana J, Hallberg KB, Johnson DB. 2007. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771. https://doi.org/10.1111/j.1462-2920.2007.01294.x.
  • Sabater S, Buchaca T, Cambra J, Catalan J, Guasch H, Ivorra N. 2003. Structure and function of benthic algal communities in an extremely acid river. J Phycol 39(3):481–489. https://doi.org/10.1046/j.1529-8817.2003.02104.x.
  • Sajjad W, Bhatti TM, Hasan F, Khan S, Badshah M, Naseem AA, Shah AA. 2016. Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale Samples. Pak J Bot 48(3):1253–1262.
  • Sajjad W, Bhatti TM, Hasan F, Shah AA. 2015. Characterization of heterotrophic and mixotrophic acidophilic bacteria isolated from black shale and acid mine drainage, Khala Chatta, Haripur, Pakistan. Int J Biosci 6(8):62–70. https://doi.org/10.12692/ijb/6.8.62-70.
  • Sanchez AI, Knittel K, Amann R, Amils R, Sanz JL. 2012. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl Environ Microbiol 78:4638–4645. https://doi.org/10.1128/AEM.00848-12.
  • Sanchez AI, Rodríguez N, Amils R, Sanz JL. 2011. Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77(17):6085–6093. https://doi.org/10.1128/AEM.00654-11.
  • Sanz JL, Rodriguez N, Diaz EE, Amils R. 2011. Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environ Microbiol 13:2336–2341. https://doi.org/10.1111/j.1462-2920.2011.02504.x.
  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL. 2010. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy 104(3–4):342–350. https://doi.org/10.1016/j.hydromet.2010.01.012.
  • Schippers A, Jozsa PG, Sand W. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431.
  • Schloss PD, Handelsman J. 2005. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6(8):229. https://doi.org/10.1186/gb-2005-6-8-229.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
  • Sogin ML, Morrison HG, Huber JA, Mark WD, Huse SM, Neal PR, Arrieta JM, Herndl GJ. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad Sci USA 103:12115–12120. https://doi.org/10.1073/pnas.0605127103.
  • Streit WR, Schmitz RA. 2004. Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498. https://doi.org/10.1016/j.mib.2004.08.002.
  • Streten JC, Manning J, Gibb KS, Neilan BA, Parry DL. 2013. The chemical composition and bacteria communities in acid and metalliferous drainage from the wet-dry tropics are dependent on season. Sci Total Environ 443:65–79. https://doi.org/10.1016/j.scitotenv.2012.10.024.
  • Tan GL, Shu WS, Zhou WH, Li XL, Lan CY, Huang LN. 2009. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site. FEMS Microbiol Ecol 70:121–129. https://doi.org/10.1111/j.1574-6941.2009.00744.x.
  • Travisany D, Di Genova A, Sepulveda A, Bobadilla-Fazzini RA, Parada P, Maass A. 2012. Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194:6327–6328. https://doi.org/10.1128/JB.01622-12.
  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43. https://doi.org/10.1038/nature02340.
  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF. 2005. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324. https://doi.org/10.1128/AEM.71.10.6319-6324.2005.
  • Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R. 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9(1):597. https://doi.org/10.1186/1471-2164-9-597.
  • Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Duran R. 2014. Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 90(1):247–263. https://doi.org/10.1111/1574-6941.12394.
  • Volant A, Desoeuvre A, Casiot C, Lauga B, Delpoux S, Morin G. 2012. Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoules Mine, France. Extremophiles 16:645–657. https://doi.org/10.1007/s00792-012-0466-8.
  • Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Zhou HW. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78(23):8264–8271. https://doi.org/10.1128/AEM.01821-12.
  • Ward DM, Ferris MJ, Nold SC, Bateson MM. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370.
  • Wielinga B, Lucy JK, Moore JN, Seastone OF, Gannon JE. 1999. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings. Appl Environ Microbiol 65:1548–1555.
  • Williams KP, Kelly DP. 2013. Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microbiol 63:2901–2906. https://doi.org/10.1099/ijs.0.049270-0.
  • Wu JY, Jiang XT, Jiang YX, Lu SY, Zou F, Zhou HW. 2010. Effects of polymerase, template dilution and cycle number on PCR based 16S rRNA diversity analysis using the deep sequencing method. BMC Microbiol 10(1):255. https://doi.org/10.1186/1471-2180-10-255.
  • Yang Y, Shi W, Wan M, Zhang Y, Zou L, Huang J, Liu X. 2008. Diversity of bacterial communities in acid mine drainage from the Shen-bu copper mine, Gansu province, China. Electron J Biotechnol 11(1):1–12. https://doi.org/10.2225/vol11-issue1-fulltext-6.
  • Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC. 2013. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics 14:485. https://doi.org/10.1186/1471-2164-14-485.
  • Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW. 2012. Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78(21):7626–7637. https://doi.org/10.1128/AEM.02036-12.
  • Yin H, Qiu G, Wu L, Xie M, Zhou J, Dai Z. 2008. Microbial community diversity and changes associated with a mine drainage gradient at the Dexing copper mine, China. Aquat Microb Ecol 51(1):67–76. https://doi.org/10.3354/ame01172.
  • Yu LI, Wang YB, Xin GOU, Su YB, Gang W. 2006. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J Environ Sci 18(6):1124–1134. https://doi.org/10.1016/S1001-0742(06)60050-8.
  • Zhang X, Niu J, Liang Y, Liu X, Yin H. 2016. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genetics 17(1):21. https://doi.org/10.1186/s12863-016-0330-4.
  • Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, Yang Y. 2011. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5(8):1303–1303. https://doi.org/10.1038/ismej.2011.11.
  • Ziegler S, Dolch K, Geiger K, Krause S, Asskamp M, Eusterhues K. 2013a. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. ISME J 7:1725–1737. https://doi.org/10.1038/ismej.2013.64.
  • Ziegler S, Waidner B, Itoh T, Schumann P, Spring S, Gescher J. 2013b. Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol 63:1499–1504. https://doi.org/10.1099/ijs.0.042986-0.
  • Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, Ramette A. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6(9):e24570. https://doi.org/10.1371/journal.pone.0024570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.