249
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evidence For In Vitro and In Situ Pyrite Weathering By Microbial Communities Inhabiting Weathered Shale

, , &
Pages 600-611 | Received 13 Dec 2018, Accepted 13 Mar 2019, Published online: 07 Apr 2019

References

  • Adeyemi AO, Gadd GM. 2005. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18(3):269–281.
  • Anderson WH. 2008. Foundation Problems and Pyrite Oxidation in the Chattanooga Shale, Estill County, Kentucky. Kentucky, USA: Kentucky Geological Survey, University of Kentucky
  • Anjum F, Shahid M, Akcil A. 2012. Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117:1–12.
  • Baker BJ, Banfield JF. 2003. Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152.
  • Balogh-Brunstad Z, Keller CK, Dickinson JT, Stevens F, Li CY, Bormann BT. 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta 72(11):2601–2618.
  • Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. 2017. In‐situ incubation of iron‐sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ Microbiol 19(3):1322–1337.
  • Benzerara K, Yoon TH, Menguy N, Tyliszczak T, Brown GE. 2005. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene. Proc Nat Acad Sci 102(4):979–982.
  • Bhatti TM. 2015. Bioleaching of organic carbon rich polymetallic black shale. Hydrometallurgy 157:246–255.
  • Bonneville S, Bray AW, Benning LG. 2016. Structural Fe (II) oxidation in biotite by an ectomycorrhizal fungi drives mechanical forcing. Environ Sci Technol 50(11):5589–5596.
  • Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, Benning LG. 2009. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37(7):615–618.
  • Cecchi G, Ceci A, Marescotti P, Persiani AM, Di Piazza S, Ballirano P, Mariotti MG, Zotti M. 2018. The geological roles played by microfungi in interaction with sulfide minerals from Libiola Mine, Liguria, Italy. Geomicrobiol J 35(7):564–569.
  • Chandra AP, Gerson AR. 2010. The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65(9):293–315.
  • Cockell CS, Pybus D, Olsson-Francis K, Kelly L, Petley D, Rosser N, Howard K, Mosselmans F. 2011. Molecular characterization and geological microenvironment of a microbial community inhabiting weathered receding shale cliffs. Microb Ecol 61(1):166–181.
  • Deacon JW. 2006. Fungal Biology. Malden, MA: Blackwell Pub.
  • De la Torre MA, Gomez-Alarcon G. 1994. Manganese and iron oxidation by fungi isolated from building stone. Microb Ecol 27(2):177–188.
  • Edwards KJ, Schrenk MO, Hamers R, Banfield JF. 1998. Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am Mineralogist 83(11–12):1444–1453.
  • Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, McGuire MM, Hamers RJ, Pace NR, Banfield JF. 1999. Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16(2):155–179.
  • Edwards KJ, Bond PL, Gihring TM, Banfield JF. 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287(5459):1796–1799.
  • Edwards KJ, Hu B, Hamers RJ, Banfield JF. 2001. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol Ecol 34(3):197–206.
  • Edwards KJ, Rutenberg AD. 2001. Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem Geol 180(1–4):19–32.
  • Edwards KJ, McCollom TM, Konishi H, Buseck PR. 2003. Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67(15):2843–2856.
  • Farbiszewska T, Farbiszewska-Kiczma J, Bąk M. 2003. Biological extraction of metals from a Polish black shale. Physicochem Prob Mineral Proc 37:51–56.
  • Gad MA, Catt JA, Le Riche HH. 1968. Geochemistry of the Whitbian (Upper Lias) sediments of the Yorkshire coast. Proc Yorkshire Geol Polytech Soc 37(1):105–140.
  • Gadd GM. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycolog Res 111(1):3–49.
  • Gadd GM. 2017. Fungi, rocks, and minerals. Elements 13(3):171–176.
  • Ghiorse WC. 1984. Biology of iron-and manganese-depositing bacteria. Annu Rev Microbiol 38(1):515–550.
  • Grattan-Bellew PE, Eden WJ. 1975. Concrete deterioration and floor heave due to biogeochemical weathering of underlying shale. Can Geotech J 12(3):372–378.
  • Hawkins AB. 2014. Engineering implications of the oxidation of pyrite: an overview, with particular reference to Ireland. In: Implications of Pyrite Oxidation for Engineering Works, New York, USA: Springer International Publishing, p1–98
  • Hedrich S, Schlömann M, Johnson DB. 2011. The iron-oxidizing proteobacteria. Microbiology (Reading, Engl) 157(6):1551–1564.
  • Hobbs PRN, Entwisle DC, Northmore KJ, Sumbler MG, Jones LD, Kemp S, Self S, Barron M, Meakin JL. 2012. Engineering Geology of British Rocks and Soils: Lias Group. Nottingham, England: British Geological Survey.
  • Hoover SE, Lehmann D. 2009. The expansive effects of concentrated pyritic zones within the Devonian Marcellus Shale Formation of North America. Quart J Eng Geol and Hydrogeol 42(2):157–164.
  • Money NP. 2001. Biomechanics of invasive hyphal growth. In: Biology of the Fungal Cell, Berlin, Heidelberg: Springer, p3–17
  • Jin L, Ravella R, Ketchum B, Bierman PR, Heaney P, White T, Brantley SL. 2010. Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory. Geochim Cosmochim Acta 74(13):3669–3691.
  • Joeckel RM, Clement BA, Bates LV. 2005. Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska. Chem Geol 215(1–4):433–452.
  • Johnson DB, Hallberg KB. 2005. Acid mine drainage remediation options: a review. Sci Tot Env 338(1–2):3–14.
  • Johnston D, Rolley S. 2008. Abandoned Mines and the Water Framework Directive in the United Kingdom. Mine Water and the Environment, Czech Republic: VSB–technical University of Ostrava, p529–532.
  • Konhauser KO. 1998. Diversity of bacterial iron mineralization. Earth-Sci Rev 43(3–4):91–121.
  • Kozubal MA, Macur RE, Jay ZJ, Beam JP, Malfatti SA, Tringe SG, Kocar BD, Borch T, Inskeep WP. 2012. Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes, and isolation of novel Fe-active microorganisms. Front Microbiol 109(3):1–16.
  • Krumbein WE, Jens K. 1981. Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50(1):25–38.
  • Kutschke S, Guézennec AG, Hedrich S, Schippers A, Borg G, Kamradt A, Gouin J, Giebner F, Schopf S, Schlömann M, et al. 2015. Bioleaching of Kupferschiefer black shale–A review including perspectives of the Ecometals project. Min Eng 75:116–125.
  • Lee JU, Kim SM, Kim KW, Kim IS. 2005. Microbial removal of uranium in uranium-bearing black shale. Chemosphere 59(1):147–154.
  • Li J, Cui J, Yang Q, Cui G, Wei B, Wu Z, Wang Y, Zhou H. 2017. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney. Front Microbiol 8:1378.
  • Li Z, Liu L, Chen J, Teng HH. 2016. Cellular dissolution at hypha-and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44(4):319–322.
  • Li J, Sun W, Wang S, Sun Z, Lin S, Peng X. 2014. Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering. Environ Microbiol 16(11):3533–3547.
  • Ma L, Chabaux F, Pelt E, Blaes E, Jin L, Brantley S. 2010. Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory. Earth Planet Sci Lett 297(1–2):211–225.
  • McKibben MA, Barnes HL. 1986. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim Cosmochim Acta 50(7):1509–1520.
  • Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, Petersen S, Amann R, Meyerdierks A. 2018. Microbial metal‐sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Env Microbiol 21:682–701.
  • Ndlovu S, Monhemius AJ. 2005. The influence of crystal orientation on the bacterial dissolution of pyrite. Hydrometallurgy 78(3–4):187–197.
  • Nordstrom DK, Southam G. 1997. Geomicrobiology of sulfide mineral oxidation. Rev Mineralogy 35:361–390.
  • Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM, Wheat CG, Edwards KJ. 2011. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5(4):692.
  • Pisapia C, Humbert B, Chaussidon M, Mustin C. 2008. Perforative corrosion of pyrite enhanced by direct attachment of Acidithiobacillus ferrooxidans. Geomicrobiol J 25(6):261–273.
  • Pye K, Miller JA. 1990. Chemical and biochemical weathering of pyritic mudrocks in a shale embankment. Quart J Eng Geol Hydrogeol 23(4):365–382.
  • Rawson PF, Wright JK, Starmer IC, Whitham F, Hemingway JE, Greensmith JT. 2000. The Yorkshire Coast (No. 34). London, UK: Geologists’ Association.
  • Rogers JR, Bennett PC, Choi WJ. 1998. Feldspars as a source of nutrients for microorganisms. Am Mineralogist 83(11–12):1532–1540.
  • Samuels T. 2018. Microbial weathering of shale rock in natural and historic industrial environments. PhD Thesis, University of Edinburgh, Edinburgh, United Kingdom
  • Smits M. 2006. Mineral tunnelling by fungi. Fungi in Biogeochem Cycl 24:311.
  • Singer PC, Stumm W. 1970. Acidic mine drainage: the rate-determining step. Science 167(3921):1121–1123.
  • Spolaore P, Joulian C, Gouin J, Morin D, d’Hugues P. 2011. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Appl Microbiol Biotechnol 89(2):441–448.
  • Spring S. 2006. The genera Leptothrix and Sphaerotilus. In: Dworkin M, editor. The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses, New York, USA: Springer-Verlag, p758–777.
  • Stackebrandt E, Schumann P. 2006. Introduction to the taxonomy of actinobacteria. In: Dworkin M, editor. The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes, New York, USA: Springer-Verlag, p297–321.
  • Sterflinger K. 2000. Fungi as geologic agents. Geomicrobiol J 17(2):97–124.
  • Tasa A, Vuorinen A, Garcia O, Jr, Tuovinen OH. 1997. Biologically enhanced dissolution of a pyrite‐rich black shale concentrate. J Env Sci Health Part A 32(9–10):2683–2695.
  • Torrentó C, Urmeneta J, Edwards KJ, Cama J. 2012. Characterization of attachment and growth of Thiobacillus denitrificans on pyrite surfaces. Geomicrobiol J 29(4):379–388.
  • Tributsch H. 2001. Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185.
  • Tuttle ML, Breit GN. 2009. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition. App Geochem 24(8):1549–1564.
  • Vaclavkova S, Schultz-Jensen N, Jacobsen OS, Elberling B, Aamand J. 2015. Nitrate-controlled anaerobic oxidation of pyrite by Thiobacillus cultures. Geomicrobiol J 32(5):412–419.
  • Vera M, Schippers A, Sand W. 2013. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97(17):7529–7541.
  • Wainwright M, Grayston SJ. 1986. Oxidation of heavy metal sulphides by Aspergillus niger and Trichoderma harzianum. Transact Brit Mycol Soc 86(2):269–272.
  • Wakeman K, Auvinen H, Johnson DB. 2008. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore . Biotechnol Bioeng 101(4):739–750.
  • Wei Z, Kierans M, Gadd GM. 2012. A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiol J 29(4):323–331.
  • Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P, Gadd GM. 2013. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15(8):2173–2186.
  • Welch SA, Banfield JF. 2002. Modification of olivine surface morphology and reactivity by microbial activity during chemical weathering. Geochim Cosmochim Acta 66(2):213–221.
  • Yang HY, Qian LIU, Chen GB, Tong LL, Auwalu ALI. 2018. Bio-dissolution of pyrite by Phanerochaete chrysosporium. Transact Nonferrous Metals Soc China 28(4):766–774.
  • Yesavage T, Fantle MS, Vervoort J, Mathur R, Jin L, Liermann LJ, Brantley SL. 2012. Fe cycling in the Shale Hills Critical Zone Observatory, Pennsylvania: an analysis of biogeochemical weathering and Fe isotope fractionation. Geochim Cosmochim Acta 99:18–38.
  • Zhu W, Reinfelder JR. 2012. The microbial community of a black shale pyrite biofilm and its implications for pyrite weathering. Geomicrobiol J 29(2):186–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.