255
Views
3
CrossRef citations to date
0
Altmetric
Articles

Culture Independent Diversity of Bacterial Communities Indigenous to Lower Altitude at Laohugou Glacial Environment

, , , , & ORCID Icon
Pages 1-13 | Received 16 May 2020, Accepted 15 Jul 2020, Published online: 30 Jul 2020

References

  • Agha R, Cires S, Wormer L, Dominguez JA, Quesada A. 2012. Multiscale strategies for the monitoring of freshwater cyanobacteria: reducing the sources of uncertainty. Water Res 46(9):3043–3053.
  • Ali B, Sajjad W, Ghimire PS, Shengyun C, Minghui W, Kang S. 2019. Culture-dependent diversity of bacteria from Laohugou glacier, Qilian Mts., China and their resistance against metals. J Basic Microbiol 59(11):1065–1081.
  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C. 1974. Chemical Analysis of Ecological Materials. Oxford, UK: Blackwell Scientific Publications.
  • Ambrosini R, Musitelli F, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Mayer C, Minora U, Azzoni RS, Diolaiuti G, et al. 2017. Diversity and assembling processes of bacterial communities in cryoconite holes of a Karakoram glacier. Microb Ecol 73(4):827–837.
  • Anesio AM, Laybourn-Parry J. 2012. Glaciers and ice sheets as a biome. Trends Ecol Evol (Amst.) 27(4):219–225.
  • Anesio AM, Lutz S, Chrismas NAM, Benning LG. 2017. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbi 3(1):1–11.
  • Auman AJ, Breezee JL, Gosink JJ, Kampfer P, Staley JT. 2006. Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56(Pt 5):1001–1007.
  • Cameron KA, Hodson AJ, Osborn AM. 2012. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 82(2):254–267.
  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ. 2011. Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460.
  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261.
  • Cheng SM, Foght JM. 2007. Cultivation-independent and -dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59(2):318–330.
  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V. 2002. Isolation and identification of bacteria from ancient and modern ice core archives. In: Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN, editors. Patagonian Ice Fields. A Unique Natural Laboratory for Environmental and Climate Change Studies. New York: Kluwer, p9–16.
  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12(11):2998–3006.
  • Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW. 2014. Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154.
  • Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW. 2006. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51(1):65–82.
  • Edwards A, Mur LAJ, Girdwood SE, Anesio AM, Stibal M, Rassner SME, Hell K, Pachebat JA, Post B, Bussell JS, Cameron SJS, et al. 2014. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol Ecol 89(2):222–237.
  • Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ, Irvine-Fynn TD, Sattler B. 2013. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 8:035003.
  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W. 2004. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Environ Microbiol 47:329–340.
  • Franzetti A, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R. 2017. Temporal variability of bacterial communities in cryoconite on an Alpine glacier. Environ Microbiol Rep 9 (2):71–78.
  • Friedmann EI, Druk AY, McKay CP. 1994. Limits of life and microbial extinction in the Antarctic desert. Antarct J 29:176–180.
  • Ganzert L, Bajerski F, Wagner D. 2014. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiol Ecol 89(2):426–441.
  • Glaring MA, Vester JK, Lylloff JE, Al-Soud WA, Sørensen SJ, Stougaard P. 2015. Microbial diversity in a permanently cold and alkaline environment in Greenland. PLOS One 10(4):e0124863.
  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS. 2011. The bacterial biogeography of British soils. Environ Microbiol 13(6):1642–1654.
  • Grzesiak J, Zdanowski MK, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Sasin-Kurowska J, Nieckarz M. 2015. Microbial community changes along the ecology glacier ablation zone (King George Island, Antarctica). Polar Biol 38(12):2069–2083.
  • Guo W, Liu S, Xu J, Wu L, Shangguan D, Yao X, Wei J, Bao W, Yu P, Liu Q, et al. 2015. The second Chinese glacier inventory: data, methods and results. J Glaciol 61(226):357–372.
  • He Y, Zhou BJ, Deng GH, Jiang XT, Zhang H, Zhou HW. 2013. Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons. BMC Microbiol 13(1):208.
  • Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B. 2013. The dynamic bacterial communities of a melting high Arctic glacier snowpack. ISME J 7(9):1814–1826.
  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. 2008. Glacial ecosystems. Ecol Monogr 78(1):41–67.
  • Huston AL, Krieger-Brockett BB, Deming JW. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2(4):383–388.
  • Jangid K, Whitman WB, Condron LM, Turner BL, Williams MA. 2013. Soil bacterial community succession during long-term ecosystem development. Mol Ecol 22(12):3415–3424.
  • Jianchu X, Shrestha A, Vaidya R, Eriksson M, Hewitt K. 2007. The melting Himalayas: regional challenges and local impacts of climate change on mountain ecosystems and livelihoods. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal.
  • Joseph B, Ramteke PW. 2013. Extracellular solvent stable cold‐active lipase from psychrotrophic Bacillus sphaericus MTCC 7526: partial purification and characterization. Ann Microbiol 63(1):363–370.
  • Junge K, Christner B, Staley J. 2011. Diversity of psychrophilic bacteria from sea ice and glacial ice communities. Extrem Handbook 11(2):793–815.
  • Koski-Vahala J, Hartikainen H, Tallberg P. 2001. Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration. J Environ Qual 30(2):546–552.
  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. 2019. Microbial diversity and soil physiochemical characteristic of higher altitude. PLOS One 14(3):e0213844.
  • Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H. 2009. Bacteria beneath the West Antarctic ice sheet. Environ Microbiol 11(3):609–615.
  • Margesin R, Feller G. 2010. Biotechnological applications of psychrophiles. Environ Technol 31(8–9):835–844.
  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP. 2007. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57(Pt 9):2179–2184.
  • Margesin R, Miteva V. 2011. Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361.
  • Mc Cammon SA, Bowman JP. 2000. Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of (Flavobacterium) salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evolut Microbiol 50(3):1055–1063.
  • Meier MF, Dyurgerov MB, Rick UK, O'neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF. 2007. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317(5841):1064–1067.
  • Malešević M, Mirković N, Lozo J, Novović K, Filipić B, Kojić M, Jovčić B. 2019. Bacterial diversity among the sediments of Glacial Lakes in the Western Balkans: exploring the Impact of Human Population. Geomicrobiology J 36(3):261–270.
  • Morita R. 2000. Low–temperature environments. In: Lederberg, J, editor. Encyclopedia of Microbiology, Vol. 3 L–P. New York: Academic Press.
  • Nowak A, Hodson A. 2014. Changes in meltwater chemistry over a 20-year period following a termal regime switch from polythermal to cold-based glaciation at Austre Broggerbreen, Svalbard. Polar Res 33(1):22779.
  • Philippot L, Tscherko D, Bru D, Kandeler E. 2011. Distribution of high bacterial taxa across the chronosequence of two Alpine Glacier Forelands. Microb Ecol 61(2):303–312.
  • Prescott LM, Harley JP, Klein DA. 2005. Microbiology. Sixth edition. New York: McGraw-Hill.
  • Ramana KV, Singh L, Dhaked RK. 2002. Biotechnological application of psychrophiles and their habitat to low temperature. J Sci Ind Res 59(2):87–101.
  • Reeder J, Knight R. 2009. The 'rare biosphere': a reality check. Nat Methods 6(9):636–637.
  • Reimann C, de Caritat P. 1998. Chemical Elements in the Environment-Factsheets for the Geochemist and Environmental Scientist. Berlin Heidelberg: Springer-Verlag.
  • Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24(4):447–473.
  • Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, Zada S, Ali B, Hayat M, Irfan M, Kang S. 2020. Resurrection of inactive microbes and resistome present in the natural frozen world: reality or myth? Sci Total Environ 735(2020):139275.
  • Sajjad W, Zheng G, Ma X, Rafiq M, Irfan M, Xu W, Ali B. 2019. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction. J Basic Microbiol 59(3):323–336.
  • Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Ali B, Rafiq M. 2018. Diversity of prokaryotic communities indigenous to acid mine drainage and related rocks from Baiyin open-pit copper mine stope. China. Geomicrobiology J 35(7):580–600.
  • Sakamoto T, Murata N. 2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5(2):208–210.
  • Segawa T, Ishii S, Ohte N, Akiyoshi A, Yamada A, Maruyama F, Li Z, Hongoh Y, Takeuchi N. 2014. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environ Microbiol 16(10):3250–3262.
  • Segawa T, Takeuchi N, Ushida K, Kanda H, Kohshima S. 2010. Altitudinal changes in a bacterial community on Gulkana Glacier in Alaska. Microbes Environ 25(3):171–182.
  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M. 1999. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geol 27(2):107–110.
  • Sherpa MT, Najar IN, Das S, Thakur N. 2018. Bacterial diversity in an alpine debris-free and debris-cover accumulation zone Glacier Ice, North Sikkim, India. Indian J Microbiol 58(4):470–478.
  • Singh P, Bengtsson L. 2004. Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol Process 18(13):2363–2385.
  • Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD. 2005. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71(11):6986–6997.
  • Skidmore ML, Foght JM, Sharp MJ. 2000. Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66(8):3214–3220.
  • Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75(1):133–191.
  • Stibal M, Tranter M, Benning LG, Rehak J. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10(8):2172–2178.
  • Sun W, Qin X, Ren J, Yang X, Zhang T, Liu Y, Cui X, Du W. 2012. The surface energy budget in the accumulation zone of the Laohugou Glacier No. 12 in the western Qilian Mountains, China, in summer 2009. Arct Antarct Alp Res 44(3):296–305.
  • Sushchik NN, Kalacheva GS, Gladyshev MI. 2001. Secretion of free fatty acids by prokaryotic and eukaryotic algae at optimal, supraoptimal and suboptimal growth temperatures. Microbiol 70(5):542–547.
  • Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K. 2010. A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, beta-glucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157(1):26–32.
  • Vincent W. 2002. Cyanobacterial dominance in the Polar Regions. In: Whitton B, Potts M, editors. The Ecology of Cyanobacteria. Dordrecht: Springer.
  • Wilms R, K€Opke B, Sass H, Chang TS, Cypionka H, Engelen B. 2006. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8(4):709–719.
  • Yang GL, Hou SG, Le Baoge R, Li ZG, Xu H, Liu YP, Du WT, Liu YQ. 2016. Differences in bacterial diversity and communities between glacial snow and glacial soil on the Chongce Ice Cap, West Kunlun Mountains. Sci Rep 6:36548.
  • Yannarell AC, Triplett EW. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71(1):227–239.
  • Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW. 2012. Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78(21):7626–7637.
  • Yoon JH, Kang SS, Lee KC, Lee ES, Kho YH, Kang KH, Park YH. 2001. Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evolut Microbiol. 51(4):1511–1520.
  • Zhang S, Hou S, Qin X, Du W, Liang F, Li Z. 2015. Preliminary study on effects of glacial retreat on the dominant glacial snow bacteria in Laohugou Glacier No. 12. Geomicrobiology J. 32(2):113–118.
  • Zhong Z-P, Solonenko NE, Gazitúa MC, Kenny DV, Mosley-Thompson E, Rich VI, Van Etten JL, Thompson LG, Sullivan MB. 2018. Clean low-biomass procedures and their application to ancient ice core microorganisms. Front Microbiol 9:1094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.