301
Views
10
CrossRef citations to date
0
Altmetric
Articles

Effect of Acid Production by Penicillium oxalicum on Physicochemical Properties of Bauxite Residue

, , , , &
Pages 929-936 | Received 21 Mar 2020, Accepted 22 Jul 2020, Published online: 04 Aug 2020

References

  • Adsul MG, Bastawde KB, Varma AJ, Gokhale DV. 2007. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol 98(7):1467–1473.
  • Borra CR, Pontikes Y, Binnemans K, Van Gerven T. 2015. Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27.
  • Chen Z, Dong GW, Gong LB, Li QB, Wang YP. 2018. The role of low-molecular-weight organic carbons in facilitating the mobilization and biotransformation of As(V)/Fe(III) from a Realgar tailing mine soil. Geomicrobiol J. 35(7):555–563.
  • Cheng QY, Xue R, Wu H, Hartley W, Zhang YF, Zhou L, Xue SG. 2020. Ecological stoichiometry of microbial biomass carbon, nitrogen and phosphorus on bauxite residue disposal areas. Geomicrobiol J. 37(5):467–474.
  • Courtney R, Harrington T, Byrne KA. 2013. Indicators of soil formation in restored bauxite residues. Ecol Eng. 58:63–68.
  • Courtney R, Harrington T. 2012. Growth and nutrition of Holcus lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum. Land Degrad Dev. 23(2):144–149.
  • Courtney R, Kirwan L. 2012. Gypsum amendment of alkaline bauxite residue – plant available aluminium and implications for grassland restoration. Ecol Eng. 42:279–282.
  • Cusack PB, Healy MG, Ryan PC, Burke IT, O’Donoghue LMT, Ujaczki É, Courtney R. 2018. Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments. J Clean Prod. 179:217–224.
  • de Castro AM, de Albuquerque de Carvalho ML, Leite SGF, Pereira N. Jr. 2010. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158.
  • Di Carlo E, Chen CR, Haynes RJ, Phillips IR, Courtney R. 2019. Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: a review. Soil Res 57(5):419–446.
  • Du J, Cao Y, Liu GD, Zhao J, Li XZ, Qu YB. 2017. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour Technol 229:88–95.
  • Gong MB, Du P, Liu X, Zhu CX. 2014. Transformation of inorganic P fractions of soil and plant growth promotion by phosphate-solubilizing ability of Penicillium oxalicum I1. J Microbiol 52(12):1012–1019.
  • Gräfe M, Klauber C. 2011. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108(1–2):46–59.
  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93.
  • Jones BEH, Haynes RJ. 2011. Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Crit Rev Environ Sci Technol 41(3):271–315.
  • Kaur A, Capalash N, Sharma P. 2019. Communication mechanisms in extremophiles: exploring their existence and industrial applications. Microbiol Res 221:15–27.
  • Khaitan S, Dzombak DA, Lowry GV. 2009. Chemistry of the acid neutralization capacity of bauxite residue. Environ Eng Sci 26(5):873–881.
  • Kong XF, Li M, Xue SG, Hartley W, Chen CR, Wu C, Li XF, Li YW. 2017. Acid transformation of bauxite residue: conversion of its alkaline characteristics. J Hazard Mater 324(Pt B):382–390.
  • Kong XF, Tian T, Xue SG, Hartley W, Huang LB, Wu C, Li CX. 2018. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation. Land Degrad Dev 29(1):58–67.
  • Krishna P, Reddy MS, Patnaik SK. 2005. Aspergillus tubingensis reduces the pH of the bauxite residue (red mud) amended soils. Water Air Soil Pollut 167(1–4):201–209.
  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729.
  • Li Y, Haynes RJ, Chandrawana I, Zhou YF. 2018. Properties of seawater neutralized bauxite residues and changes in chemical, physical and microbial properties induced by additions of gypsum and organic matter. J Environ Manage 223:489–494.
  • Li Z, Bai TS, Dai LT, Wang FW, Tao JJ, Meng ST, Hu YX, Wang SM, Hu SJ. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6:25313.
  • Liao JX, Jiang J, Xue SG, Cheng QY, Wu H, Manikandan R, Hartley W, Huang LB. 2018. A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity. Geomicrobiol J 35(10):840–847.
  • Liao JX, Zhang YF, Cheng QY, Wu H, Zhu F, Xue SG. 2019. Colonization of Penicillium oxalicum enhanced neutralization effects of microbial decomposition of organic matter in bauxite residue. J Cent South Univ 26(2):331–342.
  • MacElroy RD. 1974. Some comments on the evolution of extremophiles. Biosystems 6(1):74–75.
  • Mesbah NM, Wiegel J. 2012. Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78(12):4074–4082.
  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S. 2012. Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48(7):743–762.
  • Peng SJ, Cao Q, Qin YQ, Li XZ, Liu GD, Qu YB. 2017. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol 101(9):3627–3636.
  • Qin SP, Hu CS, Dong WX. 2010. Nitrification results in underestimation of soil urease activity as determined by ammonium production rate. Pedobiologia 53(6):401–404.
  • Qu Y, Lian B. 2013. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136:16–23.
  • Roscoe R, Vasconcellos CA, Furtini-Neto AE, Guedes GA, Fernandes LA. 2000. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian Oxisol under no-tillage and tillage systems. Biol Fert Soils 32(1):52–59.
  • Salomskiene J, Jonkuviene D, Macioniene I, Abraitiene A, Zeime J, Repeckiene J, Vaiciulyte-Funk L. 2019. Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. Eur Food Res Technol 245(3):569–579.
  • Santini TC, Kerr JL, Warren LA. 2015. Microbially-driven strategies for bioremediation of bauxite residue. J Hazard Mater 293:131–157.
  • Santini TC, Malcolm LI, Tyson GW, Warren LA. 2016. pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue. Environ Sci Technol 50(20):11164–11173.
  • Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. 2020. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 128(3):630–657.
  • Tao NG, Shi WQ, Liu YJ, Huang SR. 2011. Production of feed enzymes from citrus processing waste by solid-state fermentation with Eupenicillium javanicum. Int J Food Sci Technol 46(5):1073–1079.
  • Wang YH, Wu XM, Zhu YP, Yang XD, Li YR. 2013. Determination of secalonic acid A from endophytic fungus Penicillium oxalicum by high performance liquid chromatography. Chin J Anal Chem 41(4):575–579.
  • Whiffin VS, van Paassen LA, Harkes MP. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423.
  • Wu H, Chen L, Zhu F, Hartley W, Zhang YF, Xue SG. 2020. The dynamic development of bacterial community following long-term weathering of bauxite residue. J Environ Sci (China) 90:321–330.
  • Wu H, Liao JX, Zhu F, Millar G, Courtney R, Xue SG. 2019. Isolation of an acid producing Bacillus sp. EEEL02: Potential for bauxite residue neutralization. J Cent South Univ 26(2):343–352.
  • Wu YJ, Li M, Fu D, Santini TC, Jiang J, Hartley W, Xue SG. 2020. Simulation study for the formation of alkaline efflorescence on bauxite residue disposal areas following the phosphogypsum addition. J Clean Prod 262:121266.
  • Xue SG, Wu YJ, Li YW, Kong XF, Zhu F, Hartley W, Li XF, Ye YZ. 2019. Industrial wastes applications for alkalinity regulation in bauxite residue: a comprehensive review. J Cent South Univ 26(2):268–288.
  • Xue SG, Zhu F, Kong XF, Wu C, Huang L, Huang N, Hartley W. 2016. A review of the characterization and revegetation of bauxite residues (Red mud). Environ Sci Pollut Res Int 23(2):1120–1132.
  • Yin W, Wang YT, Liu L, He J. 2019. Biofilms: the microbial “protective clothing” in extreme environments. IJMS 20(14):3423.
  • Yin Z, Shi F, Jiang H, Roberts DP, Chen S, Fan B. 2015. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Can J Microbiol 61(12):913–923.
  • You F, Zhang LP, Ye J, Huang LB. 2019. Microbial decomposition of biomass residues mitigated hydrogeochemical dynamics in strongly alkaline bauxite residues. Sci Total Environ 663:216–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.