2,195
Views
12
CrossRef citations to date
0
Altmetric
Articles

Chemical and Physical Mechanisms of Fungal Bioweathering of Rock Phosphate

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 384-394 | Received 02 Jun 2020, Accepted 04 Dec 2020, Published online: 30 Dec 2020

References

  • Adeyemi AO, Gadd GM. 2005. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18(3):269–281.
  • Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971.
  • Arcand MM, Schneider KD. 2006. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Cienc 78(4):791–807.
  • Atienza-Martínez M, Gea G, Arauzo J, Kersten SRA, Kootstra AMJ. 2014. Phosphorus recovery from sewage sludge char ash. Biomass Bioenergy 65:42–50.
  • Brand A. 2012. Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529.
  • Burford EP, Fomina M, Gadd GM. 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67(6):1127–1155.
  • Burgstaller W, Schinner F. 1993. Leaching of metals with fungi. J Biotechnol 27(2):91–116.
  • Carlile MJ, Watkinson SC, Gooday GW. 2001. Fungi and biotechnology. In: The Fungi, 2nd ed. London (UK): Academic Press, p461–542.
  • Ceci A, Kierans M, Hillier S, Persiani AM, Gadd GM. 2015. Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl Environ Microbiol 81(15):4955–4964.
  • Cordell D, Drangert J-O, White S. 2009. The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305.
  • Cordell D, Neset T-SS. 2014. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob Environ Chang 24(1):108–122.
  • Duponnois R, Colombet A, Hien V, Thioulouse J. 2005. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem 37(8):1460–1468.
  • Ferrier J, Yang Y, Csetenyi L, Gadd GM. 2019. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ Microbiol 21(5):1821–1832.
  • Fomina M, Alexander IJ, Hillier S, Gadd GM. 2004. Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21(5):351–366.
  • Fomina M, Burford EP, Hillier S, Kierans M, Gadd GM. 2010. Rock-building fungi. Geomicrobiol J 27(6–7):624–629.
  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM. 2007. Fungal transformations of uranium oxides. Environ Microbiol 9(7):1696–1710.
  • Fomina M, Gadd GM. 2008. Metal and mineral transformations: a mycoremediation perspective. In: Robson GD, van West P, Gadd Geoffrey M., editors. Exploitation of Fungi. Cambridge (UK): Cambridge University Press, p236–254.
  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM. 2005. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71(1):371–381.
  • Gadd GM. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92.
  • Gadd GM. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49.
  • Gadd GM. 2016. Geomycology. In: Purchase D, editor. Fungal Applications in Sustainable Environmental Biotechnology. Cham (Switzerland): Springer International Publishing, p371–401.
  • Gadd GM. 2017a. The geomycology of elemental cycling and transformations in the environment. Microbiol Spectr 5(1):1–16.
  • Gadd GM. 2017b. Fungi, rocks, and minerals. Elements 13(3):171–176.
  • Gadd GM. 2017c. Geomicrobiology of the built environment. Nat Microbiol 2(4):16275.
  • Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X. 2014. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28(2–3):36–55.
  • Gharieb MM, Sayer JA, Gadd GM. 1998. Solubilization of natural gypsum (CaSO4·2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol Res 102(7):825–830.
  • Gleeson DB, Melville K, McDermott F, Clipson N, Gadd GM. 2010. Molecular characterization of fungal communities in sandstone. Geomicrobiol J 27(6–7):559–571.
  • Goldstein AH, Rogers RD, Mead G. 1993. Mining by microbe. Nat Biotechnol 11(11):1250–1254.
  • Gorbushina AA. 2007. Life on the rocks. Environ Microbiol 9(7):1613–1631.
  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD. 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198(2):546–566.
  • Hagerberg D, Thelin G, Wallander H. 2003. The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil 252(2):279–290.
  • Hoffland E, Giesler R, Breemen N, van Jongmans AG. 2003. Feldspar tunneling by fungi along natural productivity gradients. Ecosystems 6(8):739–746.
  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, et al. 2004. The role of fungi in weathering. Front Ecol Environ 2(5):258–264.
  • Illmer P, Barbato A, Schinner F. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27(3):265–270.
  • Illmer P, Schinner F. 1995. Solubilization of inorganic calcium phosphates – solubilization mechanisms. Soil Biol Biochem 27(3):257–263.
  • Jacobs H, Boswell GP, Harper FA, Ritz K, Davidson FA, Gadd GM. 2002. Solubilization of metal phosphates by Rhizoctonia solani. Mycol Res 106(12):1468–1479.
  • Jones DL. 1998. Organic acids in the rhizosphere – a critical review. Plant Soil 205(1):25–44.
  • Jones DL, Dennis PG, Owen AG, van Hees PAW. 2003. Organic acid behaviour in soils – misconceptions and knowledge gaps. Plant Soil 248(1–2):31–41.
  • Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M. 1997. Rock-eating fungi. Nature 389(6652):682–683.
  • Kang X, Csetenyi L, Gadd GM. 2019. Biotransformation of lanthanum by Aspergillus niger. Appl Microbiol Biotechnol 103(2):981–993.
  • Kang X, Csetenyi L, Gadd GM. 2020. Monazite transformation into Ce- and La-containing oxalates by Aspergillus niger. Environ Microbiol 22(4):1635–1648.
  • Kirtzel J, Ueberschaar N, Deckert-Gaudig T, Krause K, Deckert V, Gadd GM, Kothe E. 2020. Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete Schizophyllum commune. Environ Microbiol 22(4):1535–1546.
  • Kpomblekou AK, Tabatabai MA. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158(6):442–453.
  • Kpomblekou AK, Tabatabai MA. 2003. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agric Ecosyst Environ 100(2–3):275–284.
  • Kucey RMN, Janzen HH, Leggett ME. 1989. Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228.
  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N. 2001. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254.
  • Liang X, Gadd GM. 2017. Metal and metalloid biorecovery using fungi. Microb Biotechnol 10(5):1199–1205.
  • Mendes GO, Murta HM, Valadares RV, Silveira WB, Silva IR, Costa MD. 2020. Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Miner. Eng. 155:106458.doi:10.1016/j.mineng.2020.106458.
  • Mendes GO, da Silva NMRM, Anastácio TC, Vassilev NB, Ribeiro JI, da Silva IR, Costa MD. 2015. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb Biotechnol 8(6):930–939.
  • Mendes GO, Dias CS, Silva IR, Júnior JIR, Pereira OL, Costa MD. 2013. Fungal rock phosphate solubilization using sugarcane bagasse. World J Microbiol Biotechnol 29(1):43–50.
  • Mendes GO, Freitas ALM, Pereira OL, Silva IR, Vassilev NB, Costa MD. 2014. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64(1):239–249.
  • Mendes GO, Galvez A, Vassileva M, Vassilev N. 2017. Fermentation liquid containing microbially solubilized P significantly improved plant growth and P uptake in both soil and soilless experiments. Appl Soil Ecol 117–118:208–211.
  • Mendes GO, Vassilev NB, Bonduki VHA, Silva IR, Ribeiro JI, Costa MD. 2013. Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate. Appl Environ Microbiol 79(16):4906–4913.
  • Mendes GO, Zafra DL, Vassilev NB, da Silva IR, Ribeiro JI, Costa MD. 2014. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl Environ Microbiol 80(10):3081–3085.
  • Money NP. 2004. The fungal dining habit: a biomechanical perspective. Mycologist 18(2):71–76.
  • Money NP, Howard RJ. 1996. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol 20(3):217–227.
  • Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270.
  • Nelson PN, Su N. 2010. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils. Soil Res 48(3):201.
  • Oelkers EH, Valsami-Jones E. 2008. Phosphate mineral activity and sustainability. Elements 4(2):83–87.
  • Pinzari F, Tate J, Bicchieri M, Rhee YJ, Gadd GM. 2013. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen. Environ Microbiol 15(4):1050–1062.
  • Pollard W. 2018. Periglacial processes in glacial environments. In: Menzies J, van der Meer J, editors. Past Glacial Environments, 2nd ed. Amsterdsm (The Netherlands): Elsevier Inc., p537–564.
  • Pylro VS, Freitas Ad, Otoni WC, Silva Id, Borges AC, Costa MD. 2013. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization. PLoS One 8(7):e67685.
  • Rajan SSS, Watkinson JH, Sinclair AG. 1996. Phosphate rocks for direct application to soils. Adv Agron 57:77–159.
  • Richardson A, Lynch J, Ryan P, Delhaize E, Smith FA, Smith S, Harvey P, Ryan M, Veneklaas E, Lambers H, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349(1–2):121–156.
  • Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996.
  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, et al. 2009. A safe operating space for humanity. Nature 461(7263):472–475.
  • Roy ED, Richards PD, Martinelli LA, Della CL, Lins SRM, Vazquez FF, Willig E, Spera SA, VanWey LK, Porder S. 2016. The phosphorus cost of agricultural intensification in the tropics. Nat Plants 2(5):16043.
  • Sammauria R, Kumawat S, Kumawat P, Singh J, Jatwa TK. 2020. Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol 202(4):677–617.
  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM. 1999. Lead mineral transformation by fungi. Curr Biol 9(13):691–694.
  • Schneider KD, van Straaten P, de Orduna RM, Glasauer S, Trevors J, Fallow D, Smith PS. 2010. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. J Appl Microbiol 108(1):366–374.
  • Silva UdC, Mendes GdO, Silva NMRM, Duarte JL, Silva IR, Tótola MR, Costa MDMD. 2014. Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity. PLoS One 9(10):e110246.
  • Smits MM, Hoffland E, Jongmans AG, van Breemen N. 2005. Contribution of mineral tunneling to total feldspar weathering. Geoderma 125(1–2):59–69.
  • Sterflinger K. 2010. Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24(1–2):47–55.
  • Sullivan TS, Gadd GM. 2019. Metal bioavailability and the soil microbiome. Adv Agron 155:79–120.
  • Suyamud B, Ferrier J, Csetenyi L, Inthorn D, Gadd GM. 2020. Biotransformation of struvite by Aspergillus niger: phosphate release and magnesium biomineralization as glushinskite. Environ Microbiol 22(4):1588–1602.
  • Vassilev N, Malusa E, Requena AR, Martos V, López A, Maksimovic I, Vassileva M. 2017. Potential application of glycerol in the production of plant beneficial microorganisms. J Ind Microbiol Biotechnol 44(4–5):735–743.
  • Vassilev N, Martos E, Mendes G, Martos V, Vassileva M. 2013. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J Sci Food Agric 93(8):1799–1804.
  • Vassilev N, Medina A, Mendes G, Galvez A, Martos V, Vassileva M. 2013. Solubilization of animal bonechar by a filamentous fungus employed in solid state fermentation. Ecol Eng 58(0):165–169.
  • Vassilev N, Mendes GO. 2018. Solid-state fermentation and plant-beneficial microorganisms. In: Pandey A, Larroche C, Soccol CR, editors. Current Developments in Biotechnology and Bioengineering. Amsterdam (The Netherlands): Elsevier, p435–450.
  • Vassilev N, Mendes G, Costa M, Vassileva M. 2014. Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiol J 31(9):751–763.
  • Vassilev N, Serrano M, Jurado E, Bravo V, Vassileva I, Vassileva M. 2009. Effect of microbially treated agro-wastes and simultaneously solubilized animal bone char on Zn and P uptake and growth of white clover in Zn-contaminated soil. N Biotechnol 25:S312.
  • Vassilev N, Vassileva M. 2003. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61(5–6):435–440.
  • Vassilev N, Vassileva M, Martos V, Galvez A, Flor-Peregrin E, Garcia del Moral LF. 2019. Phosphate sources, microorganisms, and P plant nutrition: challenges and future trends. Arch Crop Sci 3(1):61–63.
  • Vassileva M, Eichler-Lobermann B, Reyes A, Vassilev N, Vassileva M, Eichler-Lobermann B, Reyes A, Vassilev N. 2012. Animal bones char solubilization by gel-entrapped Yarrowia lipolytica on glycerol-based media. Sci World J 2012:907143.
  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N. 2010. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85(5):1287–1299.
  • Wei Z, Kierans M, Gadd GM. 2012. A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiol J 29(4):323–331.
  • Whitelaw MA. 1999. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151.
  • Whitelaw MA, Harden TJ, Helyar KR. 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31(5):655–665.
  • Withers PJA, Elser JJ, Hilton J, Ohtake H, Schipper WJ, Van Dijk KC. 2015. Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chem 17(4):2087–2099.
  • Yang Y, Ferrier J, Csetenyi L, Gadd GM. 2019. Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus niger. Geomicrobiol J 36(10):940–949.
  • Zapata F, Roy RN, editors. 2004. Use of Phosphate Rocks for Sustainable Agriculture. Rome (Italy): FAO Land and Water Development Division and the International Atomic Energy Agency.