238
Views
13
CrossRef citations to date
0
Altmetric
Articles

Effects of heavy metals on bacterial community structure in the rhizosphere of Salsola collina and bulk soil in the Jinchuan mining area

ORCID Icon, , , , , , , , & show all
Pages 620-630 | Received 10 Mar 2020, Accepted 23 Mar 2021, Published online: 19 May 2021

References

  • Aihemaiti A, Jiang J, Li D, Liu N, Yang M, Meng Y, Zou Q. 2018. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. J Environ Manage 222:216–226.
  • Alghobar MA, Suresha S. 2017. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. J Saudi Soc Agric Sci 16(1):49–59.
  • Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M. 2012. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 12(1):193.
  • Barsova N, Yakimenko O, Tolpeshta I, Motuzova G. 2019. Current state and dynamics of heavy metal soil pollution in Russian Federation – a review. Environ Pollut 24:200–207.
  • Ben Rejeb K, Ghnaya T, Zaier H, Benzarti M, Baioui R, Ghabriche R, Wali M, Lutts S, Abdelly C. 2013. Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecol Eng 60:309–315.
  • Bi Y, Xie L, Wang J, Zhang Y, Wang K. 2019. Impact of host plants, slope position and subsidence on arbuscular mycorrhizal fungal communities in the coal mining area of north-central China. J Arid Environ 163:68–76.
  • Bulgarelli D, Spaepen SS, Themaat EVL, Shulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.
  • Chamba I, Gazquez MJ, Selvaraj T, Calva J, Toledo JJ, Armijos C. 2016. Selection of a suitable plant for phytoremediation in mining artisanal zones. Int J Phytoremediat 18(9):853–860.
  • Chodak M, Gołebiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M. 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:7–14.
  • Das S, Chou M, Jean J, Yang H, Kim PJ. 2017. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J Hazard Mater 325:279–287.
  • Gürsoy M, Harris MT, Downing JO, Barrientos-Palomo SN, Carletto A, Yaprak AE, Karaman M, Badyal JPS. 2017. Bioinspired fog capture and channel mechanism based on the arid climate plant Salsolacrassa. Colloids Surf A 529:195–202.
  • Gutiérrez C, Fernández C, Escuer M, Campos-Herrera R, Beltrán Rodríguez ME, Carbonell G, Rodríguez Martín JA. 2016. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environ Pollut 213:184–194.
  • Haroon B, Ping A, Pervez A, Faridullah, Irshad M. 2018. Characterization of heavy metal in soils as affected by long-term irrigation with industrial wastewater. J Water Reuse Desal 9(1):47–56.
  • He H, Li W, Yu R, Ye Z. 2017. Illumina-based analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination. Pedosphere 27(3):569–578.
  • Hu R, Sun K, Su X, Pan Y, Zhang Y, Wang X. 2012. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsolapasserina Bunge and Chenopodium album L. J Hazard Mater 205–206:131–138.
  • Jaiswal D, Pandey J. 2018. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: ecotoxicological implications in the Ganga River (India). Ecotox Environ Safe 150:104–115.
  • Ladonin DV. 2018. Platinum-group elements in soils and street dust of the southeastern administrative district of Moscow. Eurasian Soil Sci 51(3):268–276.
  • Lei S, Xu X, Cheng Z, Xiong J, Ma R, Zhang L, Yang X, Zhu Y, Zhang B, Tian B. 2018. Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. Microbiology Open 8:e762.
  • Lin H, Liu CJ, Li B, Dong YB. 2021. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. J Hazard Mater 402:123829.
  • Liu C, Lin H, Dong Y, Li B, Liu Y. 2018. Investigation on microbial community in remediation of lead-contaminated soil by Trifoliumrepens L. Ecotox Environ Safe 165:52–60.
  • Lopez S, Piutti S, Vallance J, Morel JL, Echevarria G, Benizri E. 2017. Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale. Soil Biol Biochem 114:121–130.
  • Ma Y, Rajkumar M, Zhang C, Freitas H. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25.
  • Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663.
  • Mendes LW, Kuramae EE, Navarrete AA, vanVeen JA, Tsai SM. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. Isme J 8:1577–1587.
  • Naeem M, Aslam Z, Khaliq A, Ahmed JN, Nawaz A, Hussain M. 2018. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Braz J Microbiol 49:9–14.
  • Ovečka M, Takáč T. 2014. Managing heavy metal toxicity exposure in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86.
  • Pérez-López R, Márquez-García B, Abreu MM, Nieto JM, Córdoba F. 2014. Erica andevalensis and Erica australis growing in the same extreme environments: phytostabilization potential of mining areas. Geoderma. 230–231:194–203.
  • Prashar P, Kapoor N, Sachdeva S. 2013. Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Bio/Technol 13(1):63–77.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181.
  • Rathi M, Nandabalan YK. 2017. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors. Environ Sci Pollut Res 24:9723–9733.
  • Riley D, Barber SA. 1969. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root–soil interface. Soil Sci Soc Am J 33(6):905.
  • Sandaa R, Torsvik V, Enger Ø, Daae FL, Catsberg T, Hahn D. 1999. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30(3):237–251.
  • Santos ES, Abreu MM, Macías F. 2019. Rehabilitation of mining areas through integrated biotechnological approach: technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere 224:765–775.
  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721.
  • Sharma RK, Archana G. 2016. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78.
  • So N, Rho J, Lee S, Hancock IC, Kim J. 2001. A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol Lett 194(1):93–98.
  • Suvarapu LN, Baek SO. 2017. Determination of heavy metals in the ambient atmosphere: a review. Toxicol Indus Health 33(1):79–96.
  • Trujillo ME. 2008. Actinobacteria. In: Encyclopedia of Life Sciences (ELS), Wiley: Chichester.
  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreak D, Osbourn A, Grant A, Poole PS. 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258.
  • Wang M, Li S, Chen S, Meng N, Li X, Zheng H, Zhao C, Wang D. 2018. Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity. Sci Tot Environ 649:413–421.
  • Wemheuer F, Kaiser K, Karlovsku P, Daniel R, Vidal S, Wemheuer B. 2017. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci Rep 7:40914.
  • Weyens N, Croes S, Dupae J, Newman L, Van Der Lelie D, Carleer R, Vangronsveld J. 2010. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut. 158(7):2422–2427. doi:10.1016/j.envpol.2010.04.004.
  • Yan X, Liu M, Zhong J, Guo J, Wu W. 2018. How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability 10(2):338.
  • Zhang C, Nie S, Lian JG, Zeng GM, Wu HP, Hua SS, Liu JY, Yuan YJ, Xiao HB, Deng LJ, et al. 2016. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci Total Environ 557–558:785–790.
  • Zhang X, Zhang L, Zhang L, Ji Z, Shao Y, Zhou H, Bao Y, Qu Y, Liu L. 2019. Comparison of rhizosphere bacterial communities of reed and Suaeda in Shuangtaizi River Estuary, Northeast China. Mar Pollut Bull 140:171–178.
  • Zhao X, Yang XJ, Shi Y, He MZ, Tan HJ, Li XR. 2014. Ion absorption and distribution of symbiotic Reaumuriasoongorica and Salsolapasserina seedlings under NaCl stress. Acta Ecol Sin 34(4):963–972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.