210
Views
4
CrossRef citations to date
0
Altmetric
Articles

Catalytic Effect of Graphite Promoting Zn Dissolution from Sphalerite using a Leptospirillum ferrooxidans Dominated Mixed Culture

, &
Pages 199-209 | Received 04 Apr 2021, Accepted 26 Jul 2021, Published online: 23 Aug 2021

References

  • Abdollahi H, Noaparast M, Shafaei SZ, Akcil A, Panda S, Kashi MH, Karimi P. 2019. Prediction and optimization of bioleaching of molybdenite concentrate by using artificial neural networks and genetic algorithm. Miner Eng 130:24–35.
  • Ahmadi A, Ranjbar M, Schaffie M. 2013. Effect of activated carbon addition on the conventional and electrochemical bioleaching of chalcopyrite concentrates. Geomicrobiol J 30:237–244.
  • Baba AA, Adekola FA, Atata RF, Ahmed RN, Panda S. 2011. Bioleaching of Zn(II) and Pb(II) from Nigerian Sphalerite and Galena ores by a mixed culture of acidophilic bacteria. Trans Nonferrous Met Soc China 21:2535–2541.
  • Bal B, Ghosh S, Das AP. 2018. Microbial recovery and recycling of manganese waste and their future application: a review. Geomicrobiol J 1:1521–0529.
  • Ballester A, Blazquez ML, Gonzalez F, Munoz JA. 2007. Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. In: Donati E, Sand W, editors. Microbial Processing of Metal Sulfides. Netherlands: Springer, p77–101.
  • Berry VK, Murr LE, Hiskey JB. 1978. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste. Hydrometallurgy 3:309–326.
  • Bevilaqua D, Acciari HA, Benedetti AV, Garcia OJR. 2007. Electrochemical techniques used to study bacterial-metal sulfides interactions in acidic environments. In: Donati E, Sand W, editors. Microbial Processing of Metal Sulfides. Springer, p60–61.
  • Boon H, Brasser J, Hansford GS, Heijnen JJ. 1999. Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Hydrometallurgy 53:57–72.
  • Boon M, Snijder M, Hansford GS, Heijnen J. 1998. The oxidation kinetics of zinc sulfide with Thiobacillus ferrooxidans. Hydrometallurgy 48:171–186.
  • Brierley CL, Brierley JA. 2009. Bioheap processes-operational requirements and techniques. In: Jergensen JV, editor. Copper Leaching, Solvent Extraction, and Electrowinning Technology. Society for Mining, Metallurgy, and Exploration Inc. (SME), p17–27.
  • Bulatovic SM. 2007. Handbook of Flotation Reagents: Chemistry, Theory and Practice. Netherlands: Elsevier, p323–366.
  • Chen ML, Zhang L, Gu GH, Hu YH, Su LJ. 2008. Effects of microorganisms on surface properties of chalcopyrite and bioleaching. Trans Nonferrous Met Soc China 18:1421–1426.
  • Domic EM. 2007. A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In: Rawlings DE, Johnson BD, editors. Biomining. Germany: Springer, p81–95.
  • Elzeky M, Attia YA. 1995. Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulphides. Chem Eng J Biochem Eng J 52:115–124.
  • Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK. 2013. Effect of dissimilatory Fe(III) reducers on bio-reduction and nickel-cobalt recovery from Sukinda chromite-overburden . Bioresour Technol 146:762–766.
  • Ghosh S, Bal B, Das AP. 2018. Enhancing manganese recovery from low grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiol J 35:242–246.
  • Gomez E, Ballester A, Gonzalez A, Blazquez ML. 1999. Leaching capacity of a new extremely thermophilic microorganism Sulfolobus rivotincti. Hydrometallurgy 52:349–366.
  • Haghshenas DF, Alamdari EK, Bonakdarpour B, Darvishi D, Nasernejad B. 2009. Kinetics of sphalerite bioleaching by Acidithiobacillus ferrooxidans. Hydrometallurgy 99:202–208.
  • ILZSG. 2019. Weblink. Accessed October 18, 2020. Available at https://www.ilzsg.org/pages/document/p1/list.aspx?ff_aa_document_type=R&from=1.
  • Karamanev DG, Nikolov LN, Mamatarkova V. 2002. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner Eng 15:341–346.
  • Kavuri NC, Sahu S, Kundu M. 2009. Bioleaching of zinc sulphide ore using thiobacillus ferrooxidans: screening of design parameters using statistical design of experiments. IUP Chem Eng J 1:40–53.
  • Konishi Y, Nishimura H, Asai S. 1998. Bioleaching of sphalerite by the acidophilic thermophilic. Hydrometallurgy 47:339–352.
  • Li Y, Kawashima N, Li J, Chandra AP, Gerson AR. 2013. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Coll Inter Sci 197–198:1–32.
  • Li Q, Shen H, Xu R, Zhang Y, Yang Y, Xu B, Jiang T, Yin H. 2020. Effect of Acidithiobacillusferrooxidans and Leptospirillumferrooxidans on preg-robbing of gold by graphite from thiourea leaching solution. J Clean Prod 261:1–9.
  • Liang CL, Xia JL, Nie ZY, Yang Y, Mac CY. 2012. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresour Technol 110:462–467.
  • Liang CL, Xia JL, Zhao XJ, Yang Y, Gong SQ, Nie ZY, Ma CY, Zheng L, Zhao YD, Qiu GZ. 2010. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy 105:179–185.
  • Lindgren P, Parnell J, Holm NG, Broman C. 2011. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting. Geochem Trans 12:3–7.
  • Lizama HM, Fairweather MJ, Dai Z, Allegretto TD. 2003. How does bioleaching start. Hydrometallurgy 69:109–116.
  • Lizama HM, Suzuk I. 1991. Interaction of chalcopyrite and sphalerite with pyrite during leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can J Microbiol 37:304–311.
  • Ma Y, Lin C. 2013. Microbial oxidation of Fe2+ and pyrite exposed to flux of micromolar H2O2 in acidic media. Sci Rep 3:1979.
  • Mehrabani JV, Shafaei SZ, Noaparast M, Mousavi SM. 2017. Bioleaching of different pyrites and sphalerite in the presence of graphite. Geomicrobiol J 34:97–108.
  • Mehrabani JV, Shafaei SZ, Noaparast M, Mousavi SM. 2014. Bioleaching of high pyrite carbon-rich sphalerite preflotation Tailings. Environ Earth Sci 71:4675–4682.
  • Mehrabani JV, Shafaei SZ, Noaparast M, Mousavi SM. 2016. Bioleaching of a low grade sphalerite concentrate produced from tailings flotation. Int J Min Geo Eng 50:169–173.
  • Mehta AP, Murr LE. 1982. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of T. ferrooxidans (30 °C) and a thermophilic microorganism (55 °C). Biotechnol Bioeng 24:919–940.
  • Mishra S, Akcil A, Panda S, Agcasulu I. 2018a. Laboratory and semi-pilot bioreactor feasibility tests for desulphurization of Turkish lignite using Leptospirillum ferriphilum. Energy Fuels 32:2869–2877.
  • Mishra S, Akcil A, Panda S, Erust C. 2018b. Biodesulphurization of turkish lignite by Leptospirillum ferriphilum: effect of ferrous, span 80 and ultrasonication. Hydrometallurgy 176:166–175.
  • Mishra S, Panda S, Pradhan N, Satapathy D, Biswal SK, Mishra BK. 2017. Insights into DBT biodegradation by a native Rhodococcus strain and its sulphur removal efficacy from two Indian coals and a calcined pet coke. Int Biodeterior Biodegrad 120:124–134.
  • Mohanty S, Ghosh S, Bal B, Das AP. 2018. A review of biotechnology processes applied for manganese recovery from wastes. Rev Environ Sci Biotechnol 17:791–811.
  • Nakazawa H, Fujisawa H, Sato H. 1998. Effect of activated carbon on the bioleaching of chalcopyrite concentrate. Int J Miner Process 55:87–94.
  • Panda S. 2020. Magnetic Separation of ferrous fractions linked to improved bioleaching of metals from waste-to-energy incinerator bottom ash (IBA): a green approach. Environ Sci Pollut Res Int 27:9475–9489.
  • Panda S, Esther J, Bhotra T, Pradhan N, Sukla LB, Mishra BK, Akcil A. 2015. Sequential bioreduction – bioleaching and bioreduction – chemical leaching hybrid tests for enhanced copper recovery from a concentrator ball mill reject sample. Hydrometallurgy 157:171–177.
  • Panda S, Mishra G, Sarangi CK, Subbaiah T, Das SK, Sarangi K, Ghosh MK, Pradhan N, Sanjay K, Mishra BK. 2016. Reactor and column Leaching studies for extraction of copper from two low grade resources: a comparative study. Hydrometallurgy 165:111–117.
  • Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Rao DS, Nayak BD, Sukla LB, Mishra BK. 2013. Bioleaching studies for recovery of copper values from pre and post thermally activated ball mill spillage samples. Front Environ Sci Eng 7:281–293.
  • Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK. 2012. Bio-hydrometallurgical processing of low grade chalcopyrite ore for recovery of copper metal. Korean J Chem Eng 29:781–785.
  • Pillai A, Pandey B, Natarajan K. 2015. Microbiology for Minerals, Metals, Materials and the Environment. Boca Raton, FL: CRC Press.
  • Prabhakar A, Mishra S, Das AP. 2019. Isolation and identification of lead (Pb) solubilizing bacteria from automobile waste and its potential for recovery of lead from end of life waste batteries. Geomicrobiol J 36:894–903.
  • Rohwerder T, Gehrke T, Kinzler K, Sand W. 2003. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248.
  • Sand W, Gehrke T, Jozsa PG, Schippers A. 2001. Biochemistry of bacterial leaching – direct vs. indirect bioleaching. Hydrometallurgy 59:159–175.
  • Sanket AS, Ghosh S, Sahoo R, Nayak S, Das AP. 2017. Molecular identification of acidophilic manganese (Mn) solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol J 34:71–80.
  • Sawlowicz Z. 2000. Framboids: from their origin to application. Mineral Trans 88:1–80.
  • Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S. 2014. Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47.
  • Schippers A, Jozsa P, Sand W. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431.
  • Schippers A, Sand W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321.
  • Tanne CK, Schippers A. 2019. Electrochemical investigation of chalcopyrite(bio)leaching residues. Hydrometallurgy 187:8–17.
  • Tong L, Zhao Q, Kamali AR, Sand W, Yang H. 2020. Effect of graphite on copper bioleaching from waste printed circuit boards. Minerals 10:79.
  • Viera M, Pogliani C, Donati E. 2007. Recovery of zinc, nickel, cobalt and other metals by bioleaching. In: Donati E, Sand W, editors. Microbial Processing of Metal Sulfides. Netherlands: Springer, p103–119.
  • Vilinska A, Rao KH. 2011. Surface characterization of Acidithiobacillus ferrooxidans adapted to high copper and zinc ions concentration. Geomicrobiol J 28:221–228.
  • Wang X, Liao R, Zhao H, Hong M, Huang X, Peng H, Wen W, Qin W, Qiu G, Huang C, et al. 2018. Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum. Hydrometallurgy 176:9–16.
  • Watling HR. 2014. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5:1–60.
  • Xia L, Dai S, Yin C, Hu Y, Liu J, Qiu G. 2009. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. J Ind Microbiol Biotechnol 36:845–851.
  • Xia J, Song J, Liu H, Nie Z, Shen L, Yuan P, Ma C, Zheng L, Zhao Y. 2018. Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES. Hydrometallurgy 180:26–35.
  • Yuehua H, Guanzhou Q, Jun W, Dianzuo W. 2002. The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy 64:81–88.
  • Zagury GJ, Narasiah KS, Tyagi RD. 1994. Adaptation of indigenous iron‐oxidizing bacteria for bioleaching of heavy metals in contaminated soils. Geomicrobiol J 15:517–530.
  • Zhang WM, Gu SF. 2007. Catalytic effect of activated carbon on bioleaching of low grade primary copper sulfide ores. Trans Nonferrous Met Soc China 17:1123–1127.
  • Zhang R, Sun C, Kou J, Zhao H, Wei D, Xing Y. 2019. Enhancing the leaching of chalcopyrite using Acidithiobacillus ferrooxidans under the induction of surfactant Triton X-100. Minerals 9:1–15.
  • Zhu P, Liu X, Chen A, Liu H, Yin H, Qiu G, Hao X, Liang Y. 2019. Comparative study on chalcopyrite bioleaching with assistance of different carbon materials by mixed moderate thermophiles. Trans Nonferrous Met Soc China 29:1294–1303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.