286
Views
8
CrossRef citations to date
0
Altmetric
Articles

Microbial Resources of Alkaline Bauxite Residue and Their Possible Exploitation in Remediation and Rehabilitation

Pages 219-232 | Received 04 May 2021, Accepted 02 Sep 2021, Published online: 20 Sep 2021

References

  • Agnew MD, Kova SF, Jarrell KF. 1995. Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. System Appl Microbiol 18(2):221–230.
  • Amritphale SS, Bhasin S, Chandra N. 2006. Energy efficient process for making pyrophyllite based ceramic tiles using phosphoric acid and mineralizes. Ceram Int 32(2):181–187.
  • Arora A, Krishna P, Malik V, Reddy MS. 2014. Alkalistable xylanase production by alkalitolerant Paenibacillus montaniterrae RMV1 isolated from red mud. J Basic Microbiol 54(10):1023–1029.
  • Babu AG, Reddy MS. 2011a. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue. Environ Pollut 159:25–29.
  • Babu AG, Reddy MS. 2011b. Aspergillus tubingensis improves the growth and native mycorrhizal colonization of bermudagrass in bauxite residue. Bioremediat J 15(3):157–164.
  • Banning NC, Phillips IR, Jones DL, Murphy DV. 2011. Development of microbial diversity and functional potential in bauxite residue sand under rehabilitation. Restor Ecol 19(101):78–87.
  • Banning NC, Sawada Y, Phillips IR, Murphy DV. 2014. Amendment of bauxite residue sand can alleviate constraints to plant establishment and nutrient cycling capacity in a water-limited environment. Ecol Eng 62:179–187.
  • Bolt GH, Bruggenwert MGM. 1976. Soil Chemistry: A. Basic Elements. Amsterdam: Elsevier Scientific Publishing Company, p179–180.
  • Boretska M, Bellenberg S, Moshynets O, Pokholenko I, Sand W. 2013. Change of extracellular polymeric substances composition of Thiobacillus thioparus in presence of sulfur and steel. Microb Biochem Technol 5:68–73.
  • Borra CR, Blanpain B, Pontikes Y, Binnemans K, Van Gerven T. 2016. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J Sustain Metall 2(1):28–37.
  • Bray AW, Stewart DI, Courtney R, Rout SP, Humphreys PN, Mayes WM, Burke IT. 2018. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment. Environ Sci Technol 52(1):152–161.
  • Caravaca F, Masciandaro G, Ceccanti B. 2002. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res 68(1):23–30.
  • Cooling DJ, Hay PS, Guilfoyle L. 2002. Carbonation of bauxite residue. In: Chandrashekar S, editor. Proceedings of the 6th International Alumina Quality Workshop, AQW Inc., Brisbane, p185–190.
  • Courtney R, Harris JA, Pawlett M. 2014. Microbial community composition in a rehabilitated bauxite residue disposal area: a case study for improving microbial community composition. Restor Ecol 22(6):798–805.
  • Courtney R, Harrington T. 2010. Growth and nutrition of Holcus lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum. Land Degrad Dev 23(2): 144–149.
  • Courtney R, Kirwan L. 2012. Gypsum amendment of alkaline bauxite residue—plant available aluminium and implications for grassland restoration. Ecol Eng 42:279–282.
  • Courtney R, Mullen G, Harrington T. 2009. An evaluation of revegetation success on bauxite residue. Restor Ecol 17 (3):350–358.
  • Courtney RG, Timpson JP. 2005. Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge; a two year field study. Plant Soil 266(1-2):187–194.
  • Courtney R, Xue S. 2019. Rehabilitation of bauxite residue to support soil development and grassland establishment. J Cent South Univ 26(2):353–360.
  • Czövek D, Novák Z, Somlai C, Asztalos T, Tiszlavicz L, Bozóki Z, Ajtai T, Utry N, Filep A, Bari F, et al. 2012. Respiratory consequences of red sludge dust inhalation in rats. Toxicol Lett 209(2):113–120.
  • Dey S, Paul AK. 2021. Evaluation of physio-biochemical potentials of alkaliphilic bacterial diversity in bauxite processing residues of diverse restoration history. Environ Sustain 4(1):155–169.
  • Dong Y, Shao Y, Liu A, Liu X, Wu M, Hu X, Zhang Q, Meng Z. 2019. Insight of soil amelioration process of bauxite residues amended with organic materials from different sources. Environ Sci Pollut Res Int. 26(28):29379–29387.
  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162.
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8(9):623–633.
  • Fulford GD, Lever G, Sato T. 1991. Recovery of rare earth elements from Bayer process red mud. US Patent 5,030,424.
  • Gautam M, Pandey D, Agrawal M. 2017. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes. Int J Phytoremediation 19(6):555–562.
  • Gelencsér A, Kováts N, Turóczi B, Rostási Á, Hoffer A, Imre K, Nyirő-Kósa I, Csákberényi-Malasics D, Tóth Á, Czitrovszky A, et al. 2011. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environ Sci Technol 45 (4):1608–1615.
  • Ghorbani Y, Oliazadeh M, Shahvedi A. 2008. Aluminum solubilization from red mud by some indigenous fungi in Iran. J Appl Biosci 7:207–213.
  • Ghosh S, Das AP. 2018. Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese. Sci Rep 8(1):8257.
  • Gianfreda L, Antonietta RM, Piotrowska A, Palumbo G, Colombo C. 2005. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341(1–3):265–279.
  • Gorret N, Maubois JL, Engasser JM, Ghoul M. 2001. Study of the effects of temperature, pH and yeast extract on growth and exopolysaccharides production by Propionibacterium acidipropionici on milk microfiltrate using a response surface methodology. J Appl Microbiol 90(5):788–796.
  • Gräfe M, Klauber C. 2011. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108(1–2):46–59.
  • Groudev SN, Groudeva VI. 1993. Microbial communities in four industrial copper dump leaching operations in Bulgaria. FEMS Microbiol Rev 11(1–3):261–267.
  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M. 2005. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59(5):629–638.
  • Gundy S, Farkas G, Székely G, Kásler M. 2013. No short-term cytogenetic consequences of Hungarian red mud catastrophe. Mutagenesis 28(1):1–5.
  • Hamdy MK, Williams FS. 2001. Bacterial amelioration of bauxite residue waste of industrial alumina plants. J Ind Microbiol Biotechnol 27(4):228–233.
  • Hammond K. 2014. Recovery of Value-Added Products From Red Mud and Foundry Baghouse Dust. Colorado School of Mines. ProQuest Dissertations Publishing, 1551227.
  • Harris J. 2009. Soil microbial communities and restoration ecology: facilitators or followers? Science 325(5940):573–574.
  • Haynes RJ. 2014. Nature of the belowground ecosystem and its development during pedogenesis. Adv Agron 127:43–109.
  • Jones BEH, Haynes RJ. 2011. Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Crit Rev Environ Sci Technol 41(3):271–315.
  • Jones BEH, Haynes RJ, Phillips IR. 2012. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium. J Environ Manage 95(1):29–38.
  • Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS. 2008. Cultivable bacterial diversity of alkaline Lonar lake, India. Microb Ecol 55(2):163–172.
  • Klauber C, Gräfe M, Power G. 2011. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108 (1–2):11–32.
  • Kolo K, Keppens E, Préat A, Claeys P. 2007. Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res Biogeo 112:G01007.
  • Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H. 1997. Microbial recovery of metals from solids. FEMS Microbiol Rev 20(3–4):605–617.
  • Krishna P, Arora A, Reddy MS. 2008. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J Microbiol Biotechnol 24(12):3079–3085.
  • Krishna P, Babu AG, Reddy MS. 2014. Bacterial diversity of extremely alkaline bauxite residue site of alumina industrial plant using culturable bacteria and residue 16S rRNA gene clones. Extremophiles 18(4):665–676.
  • Krishna P, Reddy MS, Patnaik SK. 2005. Aspergillus tubingensis reduces the pH of the bauxite residue (red mud) amended soils. Water Air Soil Pollut 167(1–4):201–209.
  • Kubicek CP, Röhr M, Rehm HJ. 1985. Citric acid fermentation. Crit Rev Biotechnol 3(4):331–373.
  • Li P, Harding SE, Liu Z. 2001. Cyanobacterial exopolysaccharides: Their nature and potential biotechnological applications. Biotechnol Genet Eng Rev 18:375–404.
  • Li Y, Liu C, Luan Z, Peng X, Zhu C, Chen Z, Zhang Z, Fan J, Jia Z. 2006. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 137(1):374–383.
  • Lian B, Chen Y, Zhu L, Yang R. 2008. Effect of microbial weathering on carbonate rocks. Earth. Sci. Front 15(6):90–99.
  • Liao J, Jiang J, Xue S, Qingyu C, Wu H, Manikandan R, Hartley W, Huang L. 2018. A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity. Geomicrobiol J 35(10):840–847.
  • Liu Y, Naidu R, Ming H. 2011. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma 163(1–2):1–12.
  • Lünsdorf H, Erb RW, Abraham WR, Timmis KN. 2000. ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environ Microbiol 2(2):161–168.
  • Mayes WM, Burke IT, Gomes HI, Anton ÁD, Molnár M, Feigl V, Ujaczki É. 2016. Advances in understanding environmental risks of red mud after the Ajka Spill, Hungary. J Sustain Metall 2(4):332–343.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116(3):278–283.
  • Mishra T, Pandey VC. 2019. Phytoremediation of red mud deposits through natural succession. In: Pandey VC, Bauddh K, editors. Phytomanagement of Polluted Sites. 1st ed. Netherlands: Elsevier, p409–424.
  • Mishra T, Singh NB, Singh N. 2017. Restoration of red mud deposits by naturally growing vegetation. Int J Phytoremediation 19 (5):439–445.
  • Nikraz HR, Bodley AJ, Cooling DJ, Kong PYL, Soomro M. 2007. Comparison of physical properties between treated and untreated bauxite residue mud. J Mater Civ Eng 19(1):2–9.
  • Nogueira EW, Hayash EA, Alves E, Lima CAD, Adorno MT, Brucha G. 2017. Characterization of alkaliphilic bacteria isolated from bauxite residue in the southern region of Minas Gerais, Brazil. Braz Arch Biol Technol 60:1–7.
  • Ochsenkuhn-Petropoulou MT, Hatzilyberis KS, Mendrinos LN, Salmas CE. 2002. Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41(23):5794–5801.
  • Oliveira A, Pampulha ME. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161.
  • Papinutti L. 2010. Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex. Bioresour Technol 101(6):1941–1946.
  • Power G, Gräfe M, Klauber C. 2011. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108(1–2):33–45.
  • Qu Y, Li H, Wang X, Tian W, Shi B, Yao M, Zhang Y. 2019. Bioleaching of major, rare earth, and radioactive elements from red mud by using indigenous chemoheterotrophic bacterium Acetobacter sp. Minerals 9(2):67.
  • Qu Y, Lian B. 2013. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136:16–23.
  • Qu Y, Lian B, Mo B, Liu C. 2013. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 136:71–77.
  • Reddy PS, Reddy NG, Serjun VZ, Mohanty B, Das SK, Reddy KR, Rao BH. 2021. Properties and assessment of applications of red mud (bauxite residue): current status and research needs. Waste Biomass Valor 12(3):1185–1217.
  • Samal S, Ray AK, Bandopadhyay A. 2015. Characterization and microstructure observation of sintered red mud–fly ash mixtures at various elevated temperature. J Clean Prod 101:368–376.
  • Santini TC, Warren IA, Kendra KE. 2015. Microbial diversity in engineered haloalkaline environments shaped by shared geochemical drivers observed in natural analogues. Appl Environ Microbiol 81(15):5026–5036.
  • Schmalenberger A, O'Sullivan O, Gahan J, Cotter PD, Courtney R. 2013. Bacterial communities established in bauxite residues with different restoration histories. Environ Sci Technol 47(13):7110–7119.
  • Smith PG, Pennifold RM, Davies MG, Jamieson EJ. 2003. Reactions of carbon dioxide with tricalcium aluminate. In: Young C, editor. Proceedings of the Fifth International Symposium on Hydrometallurgy 24–27 August 2003, The Minerals, Metals, and Materials Society, Vancouver, p.1705–1716.
  • Sorokin DY, Kuenen JG, Muyzer G. 2011. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44–16.
  • Strelkova EA, Pozdnyakova NV, Zhurina MV, Plakunov VK, Belyaev SS. 2013. Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors. Microbiol 82(2):119–125.
  • Tiago I, Chun AP, Verissimo A. 2004. Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70(12):7378–7387.
  • Urik M, Bujdos M, Milova-Ziakova B, Mikusova P, Slovak M, Matus P. 2015. Aluminium leaching from red mud by filamentous fungi. J Inorg Biochem 152:154–159.
  • Vachon P, Tyagi RD, Auclair JC, Wilkinson KJ. 1994. Chemical and biological leaching of aluminum from red mud. Environ Sci Technol 28(1):26–30.
  • Wu H, Chen L, Zhu F, Hartley W, Zhang Y, Xue S. 2020. The dynamic development of bacterial community following long-term weathering of bauxite residue. J Environ Sci 90:321–330.
  • Wu H, Liao J, Zhu F, Millar G, Courtney R, Xue S. 2019. Isolation of an acid producing Bacillus sp. EEEL02: Potential for bauxite residue neutralization. J Cent South Univ 26(2):343–352.
  • Wu C-Y, Zhuang L, Zhou S-G, Li FB, He J. 2011. Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 61(4):882–887.
  • Xue S, Kong X, Zhu F, Hartley W, Li X, Li Y. 2016. Proposal for management and alkalinity transformation of bauxite residue in China. Environ Sci Pollut Res Int 23(13):12822–12834.
  • Yadav B, Johri AK, Dua M. 2020. Metagenomic analysis of the microbial diversity in solid waste from Okhla Landfill, New Delhi, India. Microbiol Resour Announc 9(46):e00921-20. doi:10.1128/MRA.00921-20
  • Yang C, Niu Y, Su H, Wang Z, Tao F, Wang X, Tang H, Ma C, Xu P. 2010. A novel microbial habitat of alkaline black liquor with very high pollution load: microbial diversity and the key members in application potentials. Bioresour Technol 101(6):1737–1744.
  • Zhang D, Chen H, Rui Nie Z, Yuan Xia J, Lan Li E, Ping Fan X, Zheng L. 2020. Extraction of Al and rare earths (Ce, Gd, Sc, Y) from red mud by aerobic and anaerobic bi-stage bioleaching. Chem Eng J 401:125914.
  • Zhang R, Zheng S, Ma S, Zhang Y. 2011. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. J Hazard Mater 189(3):827–835.
  • Zhou R, Liu X, Luo L, Zhou Y, Wei J, Chen A, Tang L, Wu H, Deng Y, Zhang F, et al. 2017. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int Biodeterior Biodegrad 118:73–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.