166
Views
2
CrossRef citations to date
0
Altmetric
Articles

Bioleaching of Low-Grade Ni-Sulfide Samples with a Mesophilic Consortium of Iron- and Sulfur-Oxidizing Acidophiles

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 233-241 | Received 20 Jun 2021, Accepted 02 Sep 2021, Published online: 27 Sep 2021

References

  • Abhilash, Mehta KD, Kumar V, Pandey BD, Tamrakar PK. 2010. Column bioleaching of a low-grade silicate ore of uranium. Miner Process Extr Metall Rev 31:224–235.
  • Abhilash, Pandeley BD. 2011. Role of ferric ions in bioleaching of uranium from low tenor Indian ore. Can Metall Quart 50:102–112. DOI: 10.1179/000844311X12949291728050
  • Ahmadi A, Khezri M, Abdollahzadeh AA, Askari M. 2015. Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy 154:1–8.
  • Ahonen L, Tuovinen OH. 1995. Bacterial leaching of complex sulfide ore samples in bench-scale column bioreactors. Hydrometallurgy 37(1):1–21.
  • Arpalahti A, Lundström M. 2018. The leaching behavior of minerals from a pyrrhotite rich pentlandite ore during heap leaching. Miner Eng 119:116–125.
  • Arpalahti A, Lundström M. 2019. Dual aeration tests with heap leaching of a pyrrhotite-rich pentlandite ore. Hydrometallurgy 185:173–185.
  • Awad A, Koster van Groos AF, Guggenheim S. 2000. Forsteritic olivine: effect of crystallographic direction on dissolution kinetics. Geochim Cosmochim Acta 64(10):1765–1772.
  • Bakhtiari F, Zivdar M, Atashi H, Seyed Bagheri SA. 2008. Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy 90(1):40–45.
  • Bellenberg S, Turner S, Seidel L, van Wyk N, Zhang R, Sachpazidou V, Embile RF, Walder I, Leiviskä T, Dopson M. 2021. Towards bioleaching of a vanadium containing magnetite for metal recovery. Front Microbiol. 12:693615.DOI:10.3389/fmicb.2021.693615. PMC: 34276626
  • Cameron RA, Lastra R, Mortazavi S, Bédard PL, Morin L, Gould DW, Kennedy KJ. 2009a. Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH. Hydrometallurgy 97(3–4):213–220.
  • Cameron RA, Lastra R, Mortazavi S, Gould WD, Thibault Y, Bedard PL, Morin L, Kennedy KJ. 2009b. Elevated-pH bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at 5 to 45 °C. Hydrometallurgy 99(1–2):77–83.
  • Cameron RA, Lastra R, Gould WD, Mortazavi S, Thibault Y, Bédard PL, Morin L, Koren DW, Kennedy KJ. 2013. Bioleaching of six nickel sulphide ores with differing mineralogies in stirred-tank reactors at 30 °C. Miner Eng 49:172–183.
  • Cwalina B, Fischer H, Ledakowicz S. 2000. Bacterial leaching of nickel and cobalt from pentlandite. Physicochem Probl Miner Process 34:17–24.
  • Dorovskikh IV, Gorichev IG, Batrakov VV, Kurilkin VV, Izotov AD. 2006. Effect of the anionic composition and pH on the dissolution kinetics of chromium(III) oxide and chromium(III) hydroxide oxide in acids. Russ J Inorg Chem 51(1):143–151.
  • Gericke M, Govender Y. 2011. Bioleaching strategies for the treatment of nickel–copper sulphide concentrates. Miner Eng 24(11):1106–1112.
  • Ghassa S, Boruomand Z, Abdollahi H, Moradian M, Akcil A. 2014. Bioleaching of high grade Zn-Pb bearing ore by mixed moderate thermophilic microorganisms. Sep Purif Technol 136:241–249.
  • Ghassa S, Boruomand Z, Moradian M, Abdollahi H, Akcil A. 2015. Microbial dissolution of Zn-Pb sulfide minerals using mesophilic iron and sulfur-oxidizing acidophiles. Miner Process Extract Metall Rev 36(2):112–122.
  • Ghassa S, Farzanegan A, Gharabaghi M, Abdollahi H. 2020. Novel bioleaching of waste lithium ion batteries by mixed moderate thermophilic microorganisms, using iron scrap as energy source and reducing agent. Hydrometallurgy 197:105465.
  • Hubau A, Guezennec A-G, Joulian C, Falagan C, Dew D, Hudson-Edwards KA. 2020. Bioleaching to reprocess sulfidic polymetallic primary mining residues: determination of metal leaching mechanisms. Hydrometallurgy 197:105484.
  • Li H, Li C, Zhang Z. 2012. Decomposition mechanism of pentlandite during electrochemical bio-oxidation process. Trans Nonferrous Met Soc China 22(3):731–739.
  • Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G. 2014. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles. Bioresour Technol 153:300–306.
  • Li F, Yang H, Tong L, Sand W. 2021. Some aspects of industrial heap bioleaching technology: from basics to practice. Miner Process Extract Metall Rev 1–19. DOI: 10.1080/08827508.2021.1893720
  • Mahmoud A, Cézac P, Hoadley AFA, Contamine F, D'Hugues P. 2017. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeter Biodegrad 119:118–146.
  • Mariga V, Di Maria A, Van Acker K. 2021. Sustainability analysis in the mining sector: a sustainability assessment of new recycling technologies for sulphidic mine residues valorisation. Proceedings of the 7th International Slag Valorisation Symposium, KU Leuven, p. 128–133.
  • Marrero J, Coto O, Schippers A. 2020. Metal bioleaching: fundamentals and geobiotechnical application of aerobic and anaerobic acidophiles. In: Lee, NM, editor. Biotechnological Applications of Extremophilic Microorganisms. Boston, MA: de Gruyter, p261–287.
  • Meshram P, Abhilash, Pandey BD. 2019. Advanced review on extraction of nickel from primary and secondary sources. Miner Process Extract Metall Rev 40(3):157–193.
  • Moghadam HS, Stern RJ. 2015. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. J Asian Earth Sci 100:31–59
  • Neale J, Seppälä J, Laukka A, van Aswegen P, Barnett S, Gericke M. 2017. The MONDO Minerals nickel sulfide bioleach project: from test work to early plant operation. SSP 262:28–32.
  • Pakostova E, Grail BM, Johnson DB. 2017. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner Eng 106:102–107.
  • Patel BC, Sinha MK, Tipre DR, Pillai A, Dave SR. 2014. A novel biphasic leaching approach for the recovery of Cu and Zn from polymetallic bulk concentrate. Bioresour Technol 157:310–315.
  • Patel BC, Tipre DR, Dave SR. 2015. Biomining of base metals from sulphide minerals. In: Abhilash, P, Pandey, BD, Natarajan, KA, editors. Microbiology for Minerals, Metals, Materials and the Environment. Boca Raton, FL: CRC Press, p35–58.
  • Pokrovsky OS, Schott J. 2000. Kinetics and mechanism of forsterite dissolution at 25 °C and pH from 1 to 12. Geochim Cosmochim Acta 64(19):3313–3325. DOI: 10.1016/S0016-7037(00)00434-8
  • Qin WQ, Zhen SJ, Yan ZQ, Campbell M, Wang J, Liu K, Zhang YS. 2009. Heap bioleaching a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite. Hydrometallurgy 98(1–2):58–65.
  • Ravindra P, Kodli B, Rao VPRV. 2015. Effect of adaptation of Acidothiobacillus ferrooxidans on ferrous oxidation and nickel leaching efficiency. In: Ravindra, P, editor. Advances in Bioprocess Technology. Cham: Springer, p17–26.
  • Reartes G, Morando P, Blesa M, Hewlett P, Matijevic E. 1995. Reactivity of chromium oxide in aqueous solutions. 2. Acid dissolution. Langmuir 11(6):2277–2284.
  • Riekkola-Vanhanen M, Heimala S. 1999. Study of the bioleaching of a nickel containing black-schist ore. In: Amils, R, Ballester, A, editors. Biohydrometallurgy and the Environment Toward the Mining of the 21st Century - Proceedings of the International Biohydrometallurgy Symposium. Amsterdam: Elsevier, p533–542.
  • Riekkola-Vanhanen M, Sivelä C, Viguera F, Tuovinen OH. 2001. Effect of pH on the biological leaching of a black schist ore containing multiple sulfide minerals. In: Ciminelli, VST, Garcia Jr., O, editors. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Part A. Amsterdam: Elsevier, p167–174.
  • Seo M, Furuichi R, Okamoto G, Sato N. 1975. Dissolution of hydrous chromium oxide in acid solutions. Trans Japan Inst Metals 16(8):519–525.
  • Sole KC, Feather AM, Cole PM. 2005. Solvent extraction in southern Africa: an update of some recent hydrometallurgical developments. Hydrometallurgy 78(1–2):52–78.
  • Sun J-S, Wen J-K, Chen B-W, Wu B. 2019. Mechanism of Mg2+ dissolution from olivine and serpentine: implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH. Int J Miner Metall Mater 26(9):1069–1079.
  • Tayar SP, Yeste MP, Ramírez M, Cabrera G, Bevilaqua D, Gatica JM, Vidal H, Cauqui MA, Cantero D. 2020. Nickel recycling through bioleaching of a Ni/Al2O3 commercial catalyst. Hydrometallurgy 195:105350.
  • Tuovinen H, Pelkonen M, Lempinen J, Pohjolainen E, Read D, Solatie D, Lehto J. 2018. Behaviour of metals during bioheap leaching at the Talvivaara Mine, Finland. Geosciences 8(2):66.
  • Watling HR. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides — a review. Hydrometallurgy 84(1–2):81–108. DOI: 10.1016/J.HYDROMET.2006.05.001
  • Watling HR. 2008. The bioleaching of nickel-copper sulfides. Hydrometallurgy 91(1–4):70–88.
  • Watling HR. 2014. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5(1):1–60.
  • Yang C, Qin W, Lai S, Wang J, Zhang Y, Jiao F, Ren L, Zhuang T, Chang Z. 2011. Bioleaching of a low grade nickel-copper-cobalt sulfide ore. Hydrometallurgy 106(1–2):32–37.
  • Yang X, Zhang X, Fan Y, Li H. 2008. The leaching of pentlandite by Acidithiobacillus ferrooxidans with a biological-chemical process. Biochem Eng J 42(2):166–171
  • Yin S, Wang L, Kabwe E, Chen X, Yan R, An K, Lei Zhang L, Wu A. 2018. Copper bioleaching in China: review and prospect. Minerals 8(2):32.
  • Zhang G, Fang Z. 2005. The contribution of direct and indirect actions in bioleaching of pentlandite. Hydrometallurgy 80(1–2):59–66.
  • Zhen S, Yan Z, Zhang Y, Wang J, Campbell M, Qin W. 2009. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite. Hydrometallurgy 96(4):337–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.