2,147
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Organic Matter Degradation in Energy-Limited Subsurface Environments—A Bioenergetics-Informed Modeling Approach

, , , , , ORCID Icon & show all
Pages 1-16 | Received 18 Feb 2021, Accepted 20 Oct 2021, Published online: 17 Nov 2021

References

  • Amenabar MJ, Shock EL, Roden EE, Peters JW, Boyd ES. 2017. Microbial substrate preference dictated by energy demand rather than supply. Nat. Geosci. 10:577–581. doi:https://doi.org/10.1038/NGEO2978
  • Anderson TH, Domsch KH. 1985. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89.
  • Arora B, Cheng Y, King E, Bouskill N, Brodie E. 2017. Modeling microbial energetics and community dynamics. Handb Met Interact Bioremediation, 1st edition; CRC Press; 445–454.
  • Bajracharya B, Lu C, Cirpka OA. 2014. Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater. Water Resour Res 50(5):4149–4162.
  • Béguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58.
  • Belli KM, DiChristina TJ, Van Cappellen P, Taillefert M. 2015. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction. Geochim Cosmochim Acta 157:109–124.
  • Bezerra RMF, Dias AA. 2004. Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Appl Biochem Biotechnol. 112(3):173–184.
  • Brock AL, Kästner M, Trapp S. 2017. Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues. SAR QSAR Environ. Res. 28:629–650. doi:https://doi.org/10.1080/1062936X.2017.1365762
  • Canfield DE, Kristensen E, Thamdrup B. 2005. 2 Structure and growth of microbial populations. Adv Mar Biol 48:23–64.
  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ. 2000. Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45(3–4):165–241.
  • Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J Chem Phys 59(8):3873–3878.
  • Dale A, Regnier P, Van Cappellen P. 2006. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am J Sci 306(4):246–294.
  • Del Giorgio P, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29(1998):503–541.
  • Demirel Y, Sandler SI. 2002. Thermodynamics and bioenergetics. Biophys Chem 97(2–3):87–111.
  • Detmers J, Schulte U, Strauss H, Kuever J. 2001. Sulfate reduction at a lignite seam: microbial abundance and activity. Microb Ecol 42(3):238–247.
  • Eastman JA, Ferguson JF. 1981. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed 53:352–366.
  • German DP, Marcelo KRB, Stone MM, Allison SD. 2012. The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Chang Biol 18(4):1468–1479.
  • Griebler C, Lueders T. 2009. Microbial biodiversity in groundwater ecosystems. Freshw Biol 54(4):649–677.
  • Hall SJ, Treffkorn J, Silver WL. 2014. Breaking the enzymatic latch: Impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils. Ecol Soc Am. 95:2964–2973. doi:https://doi.org/10.1890/13-2151.1
  • Heijnen JJ, Dijken JP. 1992. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39(8):833–852.
  • Hoehler TM, Alperin MJ, Albert DB, Martens CS. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim Cosmochim Acta 62(10):1745–1756.
  • Hoehler TM, Jørgensen BB. 2013. Microbial life under extreme energy limitation. Nat Rev Microbiol 11(2):83–94.
  • Hoehler TM. 2004. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2(4):205–215.
  • Hoijnen JJ, van Loosdrecht MCM, Tijhuis L. 1992. A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation. Biotechnol. Bioeng. 40:1139–1154. doi:https://doi.org/10.1002/bit.260401003
  • Ingvorsen K, Zehnder JB, Jørgensen BB. 1984. Kinetics of sulphate and acetat uptake by Desulfobacter postgatei. Appl Environ Microbiol 47(2):403–408.
  • Jin Q, Bethke CM. 2005. Predicting the rate of microbial respiration in geochemical environments. Geochim Cosmochim Acta 69(5):1133–1143.
  • Jin Q, Bethke CM. 2007. The thermodynamics and kinetics of microbial metabolism. Am J Sci 307(4):643–677.
  • Jin Q, Bethke CM. 2009. Cellular energy conservation and the rate of microbial sulfate reduction. Geology 37:1027–1030.
  • Jin Q, Kirk MF. 2018. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front Environ Sci 6:21.
  • Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA 107(13):5881–5886.
  • Jurtshuk P. 1996. Bacterial metabolism. In: Baron, S, editor. Medical Microbiology. Galveston: University of Texas Medical Branch at Galveston.
  • Kempes CP, van Bodegom PM, Wolpert D, Libby E, Amend J, Hoehler T. 2017. Drivers of bacterial maintenance and minimal energy requirements. Front Microbiol 8:31.
  • Khosrovi B, Macpherson R, Miller JD. 1971. Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Arch Mikrobiol 80(4):324–337.
  • Kim DS, Fogler HS. 2000. Biomass evolution in porous media and its effects on permeability under starvation conditions. Biotechnol Bioeng 69(1):47–56.
  • Kleman G, Strohl W. 1994. Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol 60(11):3952–3958.
  • Kneeshaw TA, Mcguire JT, Cozzarelli IM, Smith EW. 2011. In situ rates of sulfate reduction in response to geochemical perturbations. Ground Water 49(6):903–913.
  • LaRowe DE, Dale AW, Amend JP, Van Cappellen P. 2012. Thermodynamic limitations on microbially catalyzed reaction rates. Geochim Cosmochim Acta 90:96–109.
  • Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9(2):119–130.
  • Leschine SB. 1995. Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426.
  • Liu JS, Vojinović V, Patiño R, Maskow T, von Stockar U. 2007. A comparison of various Gibbsenergy dissipation correlations for predicting microbial growth yields. Thermochim. Acta 458:38–46. doi:https://doi.org/10.1016/j.tca.2007.01.016
  • Lovley DR, Chapelle FH. 1995. Deep subsurface microbial processes. Rev Geophys 33(95):365–381.
  • Lovley DR, Goodwin S. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments.
  • Lovley DR, Phillips EJP. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl Environ Microbiol 55(12):3234–3236.
  • Lynd LR, Weimer PJ, Zyl WH, Van IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577.
  • Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN. 2013. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front Microbiol 4:223.
  • Morita RY. 1988. Bioavailability of energy and its relationship to growth and starvation survival in nature. Can J Microbiol 34(4):436–441.
  • Novelli PC, Michelson AR, Scranton M, Banta G, Hobbie J, Howarth R. 1988. Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Mass. Geochim Cosmochim Acta 52(10):2477–2486.
  • Pallud C, Van Cappellen P. 2006. Kinetics of microbial sulfate reduction in estuarine sediments. Geochim Cosmochim Acta 70(5):1148–1162.
  • Payn RA, Helton AM, Poole GC, Izurieta C, Burgin AJ, Bernhardt ES. 2014. A generalized optimization model of microbially driven aquatic biogeochemistry based on thermodynamic, kinetic, and stoichiometric ecological theory. Ecol Modell 294:1–18.
  • Pérez J, Muñoz-Dorado J, De La Rubia T, Martínez J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63.
  • Phelps TJ, Murphy EM, Pfiffner SM, White DC. 1994. Comparison between geochemical and biological estimates of subsurface microbial activities. Microb Ecol 28(3):335–349.
  • Plugge CM, Zhang W, Scholten JCM, Stams AJM. 2011. Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81.
  • Popovic M. 2019. Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon 5(6):e01950.
  • Reis MA, Almeida JS, Lemos PC, Carrondo MJ. 1992. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40(5):593–600.
  • Resat H, Bailey V, McCue LA, Konopka A. 2012. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microb Ecol 63(4):883–897.
  • Rickard D, Luther GW. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 °C: the mechanism. Geochim Cosmochim Acta 61(1):135–147.
  • Roden EE. 2008. Microbiological controls on geochemical kinetics 1: fundamentals and case study on microbial Fe(III) oxide reduction. In: Brantley, SL, Kubicki, JD, White, AF, editors. Kinetics of Water-Rock Interactions. New York: Springer, p335–415.
  • Roden EE, Jin Q. 2011. Thermodynamics of microbial growth coupled to metabolism of glucose, ethanol, short-chain organic acids, and hydrogen. Appl Environ Microbiol 77(5):1907–1909.
  • Roden EE, Wetzel RG. 2002. Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnol Oceanogr 47(1):198–211.
  • Roels JA. 1980. Application of macroscopic principles to microbial metabolism. Biotechnol Bioeng 103(1):2–59.
  • Rotter BE, Barry DA, Gerhard JI, Small JS. 2008. Parameter and process significance in mechanistic modeling of cellulose hydrolysis. Bioresour Technol 99(13):5738–5748.
  • Russell J, Cook G. 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59(1):48–62.
  • Russell JB. 1986. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. J Bacteriol 168(2):694–701.
  • Saltelli A, Tarantola S, Chan KP-S. 1999. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56.
  • Scheibe TD, Mahadevan R, Fang Y, Garg S, Long PE, Lovley DR. 2009. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb Biotechnol. 2:274–286. doi:https://doi.org/10.1111/j.1751-7915.2009.00087.x
  • Scheibe TD, Fang Y, Murray CJ, Roden EE, Chen J, Chien YJ, Brooks SC, Hubbard SS. 2006. Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer. Geosphere 2(4):220–235.
  • Scheytt T. 1997. Seasonal variations in groundwater chemistry near Lake Belau, Schleswig-Holstein, Northern Germany. Hydrogeology 5(2):86–95.
  • Shampine LF, Reichelt MW. 1997. The MATLAB ODE Suite. SIAM J Sci Comput. 18(1):1–22.
  • Sinsabaugh RL, Follstad Shah JJ. 2012. Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst. 43(1):313–343.
  • Sinsabaugh RL, Follstad Shah JJ. 2012. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43:313–343. doi:https://doi.org/10.1146/annurev-ecolsys-071112-124414
  • Small J, Nykyri M, Helin M, Hovi U, Sarlin T, Itävaara M. 2008. Experimental and modelling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste. Appl Geochem 23(6):1383–1418.
  • Smeaton CM, Van Cappellen P. 2018. Gibbs energy dynamic yield method (GEDYM): predicting microbial growth yields under energy-limiting conditions. Geochim Cosmochim Acta 241:1–16.
  • Stolpovsky K, Martinez-Lavanchy P, Heipieper HJ, Van Cappellen P, Thullner M. 2011. Incorporating dormancy in dynamic microbial community models. Ecol Modell 222(17):3092–3102.
  • Thullner M, Regnier P. 2019. Microbial controls on the biogeochemical dynamics in the subsurface. Rev Miner Geochem 85(1):265–302.
  • Tiehm A, Nickel K, Neis U. 1997. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci Technol 36:121–128.
  • Tijhuis L, Van Loosdrecht MC, Heijnen JJ. 1993. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 42(4):509–519.
  • Van Bodegom P. 2007. Microbial maintenance: a critical review on its quantification. Microb Ecol 53(4):513–523.
  • Van Cappellen P, Gaillard JF. 1996. Biogeochemical dynamics in aquatic sediments. Rev Miner 34:335–376.
  • Van Walsum GP, Lynd LR. 1998. Allocation of ATP to synthesis of cells and hydrolytic enzymes in cellulolytic fermentative microorganisms: bioenergetics, kinetics, and bioprocessing. Biotechnol Bioeng 58:316–320.
  • VanBriesen JM. 2002. Evaluation of methods to predict bacterial yield using thermodynamics. Biodegradation 13(3):171–190.
  • Vavilin VA, Fernandez B, Palatsi J, Flotats X. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28(6):939–951.
  • Wang G, Post W, Mayes M. 2013. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses.
  • Wilson DB. 2008. Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297.
  • Wilson DB. 2009. Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299.
  • Wilson DB. 2011. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263.
  • Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, Handley KM, Mullin SW, Nicora CD, Singh A, et al. 2014. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J 8(7):1452–1463.
  • Zhang Y-HP, Lynd LR. 2005. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci USA 103(39):9429–9430.
  • Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5:305–316. doi:https://doi.org/10.1038/ismej.2010.117