325
Views
5
CrossRef citations to date
0
Altmetric
Articles

Desulphurization of Dibenzothiophene by Different Bacterial Strains: An Eco-Friendly Approach to Obtain Clean Fuel from Coal

ORCID Icon, , , &
Pages 477-486 | Received 06 Oct 2021, Accepted 19 Jan 2022, Published online: 17 Feb 2022

References

  • Akhtar N, Akhtar K, Ghauri MA. 2018. Biodesulfurization of thiophenic compounds by a 2-hydroxybiphenyl-resistant Gordonia sp. HS126-4N carrying dszABC genes. Curr Microbiol 75(5):597–603.
  • Akhtar N, Ghauri MA, Akhtar K. 2016. Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria. Arch Microbiol 198(6):509–519.
  • Ali I, Peng C, Khan ZM, Naz I. 2017. Yield cultivation of magnetotactic bacteria and magnetosomes: a review. J Basic Microbiol 57(8):643–610.
  • Ansari F. 2008. Use of magnetic nanoparticles to enhance biodesulfurization. A thesis of PhD, Cranfield University, England.
  • Ayhan D, Balat M. 2004. Coal desulfurization via different methods. Energ Source A 26(6):541–550.
  • Baruah BP, Khare P. 2007. Pyrolysis of high sulfur Indian coals. Energy Fuels 21(6):3346–3352.
  • Bassi LE, Ouertani RN, Shinzato N, Ghrabi A. 2018. Biotransformation of dibenzothiophene by resting cells of a newly isolated Serratia marscens sp. strain originated from industrial wastewater. J Bioremediat Biodegrad 09(03):439.
  • Beskoski VP, Milic J, Mandic B, Takic M, Vrvic MM. 2008. Removal of organically bound sulphur from oil shale by iron (III)-ion generated–regenerated from pyrite by the action of Acidithiobacillus ferrooxidans-research on a model system. Hydrometallurgy 94:8–13.
  • Bhatia S, Sharma DK. 2012. Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res Int 19(8):3491–3497.
  • Boniek D, Figueiredo B, Santos AFB, de Resende Stoianoff MA. 2015. Biodesulfurization: a mini review about the immediate search for the future technology. Clean Techn Environ Policy 17(1):29–37.
  • Canales C, Eyzaguirre J, Baeza P, Aballay P, Ojeda J. 2018. Kinetic analysis for biodesulfurization of dibenzothiophene using R. rhodochrous absorbed on silica. Ecol Chem Eng 25(4):549–556.
  • Çelik PA, Aksoy DÖ, Koca S, Koca H, Çabuk A. 2019. The approach of biodesulfurization for clean coal technologies: a review. Int J Environ Sci Technol 16(4):2115–2132.
  • Chen H, Zhang WJ, Chen JM, Cai YB, Li W. 2008. Desulfurization of various organic sulfur compounds and the mixture of DBT + 4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99(9):3630–3634.
  • Chen S, Zhao C, Liu Q, Zang M, Liu C, Zhang Y. 2018. Thermophilic biodesulfurization and its application in oil desulfurization. Appl Microbiol Biotechnol 102(21):9089–9103.
  • Feng S, Yang H, Zhan X, Wang W. 2016. Enhancement of dibenzothiophene biodesulfurization by weakening the feedback inhibitions effects based on a systematic understanding of the biodesulfurization mechanism by Gordonia sp. through the potential “4S” pathway. RSC Adv 6(86):82872–82881.
  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A. 1998. Isolation of a unique benzothiophene-desulphurizing bacterium Gordona sp. strain 213E, and characterization of the desulphurization pathway. Microbiology 144(9):2545–2553. 221287-144-9-2545.
  • Gunam I, Yamamura K, Sujaya I, Antara N, Aryanta W, Tanaka M, Tomita F, Sone T, Asano K. 2013. Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J Microbiol Biotechnol 23(4):473–482.
  • Gundlach ER, Boehm PD, March M, Atlas RM, Ward DM, Wolfe DA. 1983. The fate of Amoco Cadiz oil. Science 221(4606):122–129.
  • Hideyuki K, Akira S. 2001. Alkyl and polynuclear aromatic thiophenes in Neogene sediments of the Shinjo basin, Japan. J Geochem 35:37–48.
  • Honda H, Sugiyama H, Saito I, Kobayashi T. 1998. High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation. J Biosci Bioeng 85(3):334–338.
  • Hu X, Liu Y, Yang L, Shi Q, Zhang W, Zhong C. 2018. SO2 emission reduction decomposition of environmental tax based on different consumption tax refunds. J Clean Prod 186:997–1010.
  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M. 1994. Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol 60(1):223–226.
  • Jatoi AS, Aziz S, Soomro SA. 2021. Experimental and numerical investigation of DBT degradation via Rhodococcus spp. (SL-9) through the use of biological assisted method. Biomass Conv Bioref. doi:https://doi.org/10.1007/s13399-021-01406-z.
  • Karimi E, Jeffryes C, Yazdian F, Akhavan Sepahi A, Hatamian A, Rasekh B, Rashedi H, Omidi M, Ebrahim-Habibi M-B, Ashrafi SJ. 2017. DBT desulfurization by decorating Rhodococcus erythropolis IGTS8 using magnetic Fe3O4 nanoparticles in a bioreactor. Eng Life Sci 17(5):528–535.
  • Kirimura K, Furuya T, Nishii Y, Ishii Y, Kino K, Usami S. 2001. Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91(3):262–266.
  • Kumar A, Singh AK, Singh Prakash K, Singh Asha L, Saikia BK, Kumar A. 2019. Desulfurization of Giral lignite of Rajasthan (Western India) using Burkholderia sp. GR 8-02. Int J Coal Prep Util. doi:https://doi.org/10.1080/19392699.2019.1651721.
  • Li MJ, Wang TG, Shi SB, Zhu L, Fang RH. 2014. Oil maturity assessment using maturity indicators based on methylated dibenzothiophenes. Pet Sci 11(2):234–246.
  • Liu F, Lei Y, Shi J, Zhou L, Wu Z, Dong Y, Bi W. 2020. Effect of microbial nutrients supply on coal bio-desulfurization. J Hazard Mater 384:121324.
  • Makgato SS, Chirwa EMN. 2020. The desulphurization potential of Waterberg steam coal using bacteria isolated from coal: the SO2 emissions control technique. J Clean Prod 263:121051.
  • Marinov SP, Gonsalvesh L, Stefanova M, Yperman J, Carleer R, Reggers G, Yürüm Y, Groudeva V, Gadjanov P. 2010. Combustion behaviour of some biodesulphurized coals assessed by TGA/DTA. Thermochim Acta 497(1–2):46–51.
  • Martín-Cabello G, Terrón-González L, Ferrer M, Santero E. 2020. Identification of a complete dibenzothiophene biodesulfurization operon and its regulator by functional metagenomics. Environ Microbiol 22(1):91–106.
  • Medunić G, Singh PK, Singh AL, Rai A, Rai S, Jaiswal MK, Obrenović Z, Petković Z, Janeš M. 2019. Use of bacteria and synthetic zeolites in remediation of soil and water pollution with superhigh-organic-sulfur Raša coal (Raša Bay, North Adriatic, Croatia). Water 11:1419.
  • Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK. 2014. Effect of native bacteria Sinomonas flava 1C and Acidithiobacillus ferrooxidans on desulphurization of Meghalaya coal and its combustion properties. Fuel 117:415–421.
  • Mishra S, Pradhan N, Panda S, Akcil A. 2016. Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol 152:325–342.
  • Mketo N, Nomngongo PN, Ngila JC. 2016. Evaluation of different microwave-assisted dilute acid extracting reagents on simultaneous coal biodesulphurization and demineralization. Fuel 163:189–195.
  • Mohamed ME, Al-Yacoub ZH, Vedakumar JV. 2015. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria. Front Microbiol 6(:112.
  • Mohebali G, Ball AS, Rasekh B, Kaytash A. 2007. Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40(4):578–584.
  • Monticello DJ. 2000. Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11(6):540–546.
  • Murarka P, Bagga T, Singh P, Rangra S, Srivastava P. 2019. Isolation and identification of a TetR family protein that regulates the biodesulfurization operon. AMB Express 9(1):71.
  • Nassar HN, El-Gendy NS, Abo-State MA, Mostafa YM, Mahdy HM, El-Temtamy SA. 2013. Desulfurization of Dibenzothiophene by a Novel Strain Brevibacillus invocatus C19 isolated from Egyptian coke. Biosci, Biotechnol Res Asia 10(1):29–46.
  • Nekodzuka S, Nakajima-Kambe T, Nomura N, Lu J, Nakahara T. 1997. Specific desulfurization of dibenzothiophene by Mycobacterium sp. G3. Biocatal Biotransform 15(1):17–27.
  • Ohshiro T, Suzuki K, Izumi Y. 1996. Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolisD-1. J Ferment Bioeng 81(2):121–124.
  • Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF. 1997. Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. strain IGTS8 (ATCC53968). Microbiol 143(9):2961–2973.
  • Oyo-Ita OE, Oyo-Ita IO, Elarboui S. 2017. Reassessment of dibenzothiophene as marker for petroleum and coal contamination in sediments from Imo River, SE Nigeria. Environ Forensics 18(4):285–295.
  • Peng C, Huang D, Shi Y, Zhang B, Sun L, Li M, Deng X, Wang W. 2019. Comparative transcriptomic analysis revealed the key pathways responsible for organic sulfur removal by thermophilic bacterium Geobacillus thermoglucosidasius W-2. Sci Total Environ 676:639–650.
  • Rahpeyma SS, Mohammadi M, Raheb J. 2017. Biodesulphurization of dibenzothiophene by bacterial strains in cooperation with Fe3O4, ZnO and CuO nanoparticles. J Microbial Biochem Technol 9:587–591.
  • Rath K, Mishra B, Vuppu S. 2012. Biodegrading ability of Organo-Sulphur compound of a newly isolated microbe Bacillus sp. KS1 from the oil contaminated soil. Arch Appl Sci Res 4:465–471.
  • Rhee SK, Chang JH, Chang YK, Chang HN. 1998. Desulfurization of dibenzothiophene and diesel oils by a newly isolated gordona strain, CYKS1. Appl Environ Microbiol 64(6):2327–2331.
  • Sadare OO, Obazu F, Daramola MO. 2017. Biodesulfurization of petroleum distillates-current status, opportunities and future challenges. Environments 4(4):85.
  • Shahaby AF, Essam El-Din KM. 2017. Desulfurization of crude oil and oil products by local isolated bacterial strains. Int J Curr Microbiol Appl Sci 6:2695–2711.
  • Singh AK, Kumar A, Singh Prakash K, Singh Asha L, Kumar A. 2018. Bacterial desulphurization of low rank coal: a case study of Eocene lignite of Western Rajasthan, India. Energ Source A 40(10):1199–1208.
  • Singh AK, Singh MP, Singh Prakash K. 2013. Petrological investigations of Oligocene coals from foreland basin of northeast India. Energy Explor Exploit. 31(6):909–936.
  • Singh A, Lata Singh Prakash K, Kumar A, Singh MP. 2012. Desulfurization of selected hard and brown coal samples from India and Indonesia with Ralstonia sp. and Pseudoxanthomonas sp. Energy Explor Exploit. 30(6):985–998.
  • Singh PK, Rajak PK, Singh MP, Singh VK, Naik AS, Singh AK. 2016. Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India: Understanding the Evolution through petrological modelling. Int J Coal Sci Technol. 3(2):148–164.
  • Singh PK, Singh AL, Kumar A, Singh MP. 2012. Mixed bacterial consortium as an emerging tool to remove hazardous trace metals from coal. Fuel. 102:227–230. fuel. 2012.06.039.
  • Singh PK, Singh AL, Kumar A, Singh MP. 2013. Control of different pyrite forms on desulfurization of` coal with bacteria. Fuel. 106:876–879.
  • Singh PK, Singh AL. 2010. Desulfurization and demineralization of coal with bacteria: an eco-friendly concept for clean coal energy. In: Bajpai, V, Sharma, P, Gupta, VK, editors. Recent Trends in Microbial Biotechnology. Germany: Lambert Academic Publishing, p215–231.
  • Singh PK, Singh MP, Singh AK, Naik AS. 2012. Petrographic and geochemical characterization of coals from Tiru valley, Nagaland, NE India. Energy Explor Exploit. 30(2):171–192.
  • Singh PK, Singh VK, Singh MP, Rajak PK. 2017a. Petrographic characteristics and Paleoenvironmental history of Eocene lignites of Cambay basin, Western India. Int J Coal Sci Technol. 4(3):214–233.
  • Singh PK, Singh VK, Singh MP, Rajak PK. 2017b. Understanding the paleomires of Eocene lignites of Kachchh basin, Gujarat (Western India): Petrological implications. Int J Coal Sci Technol. 4(2):80–101.
  • Singh PK, Singh VK, Singh MP, Rajak PK. 2017c. Paleomires of Eocene lignites of Bhavnagar, Saurashtra Basin (Gujarat), Western India: petrographic implications. J Geol Soc India. 90(1):9–19.
  • Singh PK, Singh MP, Singh AK, Naik AS, Singh Vikas K, Singh Vijay K, Rajak PK. 2012. Petrological and geochemical investigations of Rajpardi lignite deposit, Gujarat, India. Energy Explor Exploit. 30(1):131–152.
  • Singh VK, Rajak PK, Singh Prakash K. 2019. Revisiting the paleomires of western India: an insight into the early Paleogene lignite corridor. J Asian Earth Sci. 171:363–375.
  • Soleimani M, Bassi A, Margaritis A. 2007. Biodesulfurization of refractory organic sulphur compounds in fossil fuels. Biotechnol Adv. 25(6):570–596.
  • Sun W, Ali I, Liu J, Dai M, Cao W, Jiang M, Saren G, Yu X, Peng C, Naz I. 2019. Isolation, identification, and characterization of diesel-oil-degrading bacterial strains indigenous to Changqing oil field, China. J Basic Microbiol. 59(7):723–734.
  • Sun W, Cao W, Jiang M, Saren G, Liu J, Cao J, Ali I, Yu X, Peng C, Naz I. 2018. Isolation and characterization of biosurfactant producing and diesel oil degrading Pseudomonas sp. CQ2 from Changqing oil field. RSC Adv. 8(69):39710–39720.
  • Sun W, Zhu B, Yang F, Dai M, Sehar S, Peng C, Ali I, Naz I. 2021. Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere. 265:129090.
  • Van Hamme JD, Singh A, Ward OP. 2003. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 67(4):503–549.
  • Xu P, Feng J, Yu B, Li F, Ma C. 2009. Recent developments in biodesulfurization of fossil fuels. Adv Biochem Engin/Biotechnol. 113:255–274.
  • Zhang M, Yue J, Yang YP, Zhang H, Lei J, Jin R, Zhang X, Wang H. 2005. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China. J Clin Microbiol. 43(11):5477–5482.
  • Zhu Z, Li M, Tang Y, Qi L, Leng J, Liu X, Xiao H. 2019. Identification of phenyl dibenzothiphenes in coals and the effects of thermal maturity on their distributions based on geochemical data and theoretical calculations. Org Geochem. 138:103910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.