93
Views
1
CrossRef citations to date
0
Altmetric
Articles

Impact of Copper Oxide Nanoparticles on the Growth and Biochemical Content of Cyanobacterium Wollea Salina Chatchawan, Kozlíková, Komárek & Kaštovský

ORCID Icon &
Pages 552-565 | Received 08 Jan 2021, Accepted 26 Feb 2022, Published online: 22 Mar 2022

References

  • Al-Khazali ZKM, Alghanmi HA. 2019. Influence of different concentrations of nano-copper oxide on the growth of coelastrella terrestris. J Phys Conf Ser 1234:012071.
  • Andersen RA. 2005. Algal culturing techniques. Elsevier Academic Press, New York, 578 p.
  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917.
  • Carpenter K. 2020. Benthic sources of cyanotoxins in three Oregon rivers used for municipal drinking water supply. Research Hydrologist U.S. Geological Survey Oregon Water Science Center Portland, Oregon.
  • Chen Z, Song S, Wen Y, Zou Y, Liu H. 2016. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress. Environ Sci Pollut Res Int 23:17910–17918.
  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J. 2003. Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J 17:1195–1214.
  • Dimier C, Corato F, Tramontano F, Brunet C. 2007. Photoprotection and xanthophyll‐cycle activity in three marine diatoms 1. J Phycol 43:937–947.
  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356.
  • Fan G, Bao M, Zheng X, Hong L, Zhan J, Chen Z, Qu F. 2019. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: efficiency and its mechanisms. J Hazard Mater 367:529–538.
  • Fares M, Abu Al-Rub F, Qndah M. 2017. Handbook of metal-microbe interactions and bioremediation. Chapter 37: Toxicity of Copper and Remediation Approaches. CRC Press.
  • Fathi P, Sadeghi G, Hosseini M-J, Farahmandkia Z, Mehrasbi MR. 2020. Effects of copper oxide nanoparticles on the Chlorella algae in the presence of Humic acid. SN Appl Sci 2:140.
  • Halbus AF, Horozov TS, Paunov VN. 2019. Self-grafting copper oxide nanoparticles show a strong enhancement of their anti-algal and anti-yeast action. Nanoscale Adv 1:2323–2336.
  • Hasan MR, Rina C. 2009. Use of Algae and Aquatic Macrophytes as Feed in Small-Scale Aquaculture: A Review. Food and Agriculture Organization of the United Nations (FAO), Canada. p531.
  • Hasle G. 1978. Some specific preparations: diatoms in Sournia A. (Ed.). Phytoplankton Manual. Paris: UNESCO.
  • Hasle G. 1997. Identifying Marine Phytoplankton. Acad. Press, United States.
  • Havlin JL, Tisdale SL, Nelson WL, Beaton JD. 2016. Soil Fertility and Fertilizers. Pearson Education India, New Jersey, USA.
  • Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A. 2014. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 8(sup1):57–71.
  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074.
  • Khan MI, Shin JH, Kim JD. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36.
  • Kozlíková-Zapomělová E, Chatchawan T, Kaštovský J, Komárek J. 2016. Phylogenetic and taxonomic position of the genus Wollea with the description of Wollea salina sp. nov. (Cyanobacteria, Nostocales). Fottea 16:43–55.
  • Kultschar B, Llewellyn C. 2018. Secondary Metabolites in Cyanobacteria. Secondary Metabolites—Sources Applications, London, UK.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.
  • Lyddy R. 2009. Nanotechnology. In: Wexler P, Gilbert SG, Hakkinen PJ., editors. Information Resources in Toxicology. San Diego: Academic Press; p321–328.
  • Mahawar H, Prasanna R, Singh SB, Nain L. 2018. Influence of silver, zinc oxide and copper oxide nanoparticles on the cyanobacterium Calothrix elenkinii. BioNanoSci 8:802–810.
  • Mallick N. 2004. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597.
  • Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232.
  • Maulood BK, Hassan FM, Al-Lami AA, Toma JJ, Ismail AM. 2013. Checklist of Algal Flora in Iraq. Baghdad: Ministry of Environment.
  • Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG. 2013. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142–143:431–440.
  • Mishra AK. 2013. Nanomedicine for drug delivery and therapeutics. John Wiley & Sons, Hoboken, New Jersey, U.S.
  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I. 2006. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62.
  • Mourdikoudis S, Pallares RM, Thanh NT. 2018. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934.
  • Murty B, Shankar P, Raj B, Rath B, Murday J. 2013. Textbook of nanoscience and nanotechnology. Springer Science & Business Media, Berlin/Heidelberg, Germany.
  • Mykhaylenko NF, Zolotareva EK. 2017. The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Res Lett 12:147.
  • Ogi T, Saitoh N, Nomura T, Konishi Y. 2010. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res 12:2531–2539.
  • Plaas HE, Paerl HW. 2020. Toxic cyanobacteria: a growing threat to water and air quality. Environ Sci Technol. 55(1):44–64.
  • Purbonegoro T, Suratno Puspitasari R, Husna NA. 2018. Toxicity of copper on the growth of marine microalgae Pavlova sp. and its chlorophyll- a. IOP Conf Ser: Earth Environ Sci. 118:012060.doi:https://doi.org/10.1088/1755-1315/118/1/012060.
  • Reynolds CS. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, England.
  • Rinawati M, Sari LA, Pursetyo KT. 2020. Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. IOP Conf Ser: Earth Environ Sci 441:012056.
  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61.
  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112.
  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33.
  • Sarma SJ, Das RK, Brar SK, Le Bihan Y, Buelna G, Verma M, Soccol CR. 2014. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy 78:16–22.
  • Saxena P. 2018. Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr Pollut Rep 4:128–142.
  • Sibi G, Ananda Kumar D, Gopal T, Harinath K, Banupriya S, Chaitra S. 2017. Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int J Scientific Res Environ Sci Toxicol. 2:1–8.
  • Siddiqui MH, Al-Whaibi MH. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J Biol Sci 21:13–17.
  • Stein-Taylor JR, Littler DS, Inc PSoA, Gantt E, Littler MM, Hellebust JA, Craigie JS, America PSo. 1973. Handbook of Phycological Methods: Culture methods and growth measurements, edited by J. R. Stein. University Press, England.
  • Tawong W, Pongcharoen P, Pongpadung P, Ponza S. 2019. Neowollea manoromense gen. & sp. nov. (Nostocales, Cyanobacteria), a novel Geosmin producer isolated from Thailand. Phytotaxa 424:1–17.
  • Tsukuda M, Kitahara K, Miyazaki K. 2017. Comparative RNA function analysis reveals high functional similarity between distantly related bacterial 16 S rRNAs. Sci Rep 7:9993.
  • Tumbleson ME, Schook LB. 1995. International Symposium Swine in Biomedical Research, University of Maryland, College Park (USA). International Symposium Swine in Biomedical Research: October 22–25, 1995, the Inn and Conference Center, University of Maryland, College Park, MD, College of Veterinary Medicine.
  • Umebese CE, Motajo AF. 2008. Accumulation, tolerance and impact of aluminium, copper and zinc on growth and nitrate reductase activity of Ceratophyllum demersum (Hornwort). J Environ Biol 29:197–200.
  • Webb VL, Maas EW. 2002. Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207:43–47.
  • Wiedeman VE, Walne PL, Trainor FR. 1964. A new technique for obtaining axenic cultures of algae. Can J Bot 42:958–959.
  • Yang J, Cao J, Xing G, Yuan H. 2015. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544.
  • Yruela I. 2005. Copper in plants. Braz J Plant Physiol 17:145–156.
  • Zavřel T, Sinetova M, Červený J. 2015. Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protocol 5:e1467.
  • Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B. 2016. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Nanotoxicology 10:1297–1305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.