149
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microbiological Processing of a Porphyry Copper Ore and Mineralogical Analysis of Solid Residues

, , , & ORCID Icon
Pages 606-618 | Received 14 Nov 2021, Accepted 28 Mar 2022, Published online: 12 Apr 2022

References

  • Acevedo F. 2002. Present and future of bioleaching in developing countries. Electron J Biotechnol 5(2):196–199.
  • Acevedo F, Gentina JC, Valencia P. 2004. Optimization of pulp density and particle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus. World J Microbiol Biotechnol 20(8):865–869.
  • Ai C, Yan Z, Chai H, Gu T, Wang J, Chai L, Qiu G, Zeng W. 2019. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation. J Ind Microbiol Biotechnol 46(8):1113–1127.
  • Akcil A, Ciftci H, Deveci H. 2007. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner Eng 20(3):310–318.
  • Boon M, Heijnen JJ. 1998. Gas–liquid mass transfer phenomena in bio-oxidation experiments of sulphide minerals: a critical review of literature data. Hydrometallurgy 48(2):187–204.
  • Chaerun SK, Putri EA, Mubarok MZ, Minwal WP, Ichlas ZT. 2017. Supergene porphyry copper ores from Sungai Mak Gorantalo of Indonesia by an iron- and sulfur-oxidizing mixotrophic bacterium. SSP 262:20–23.
  • d’Hugues P, Foucher S, Gallé-Cavalloni P, Morin D. 2002. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int J Miner Process 66(1–4):107–119.
  • Das T, Ayyappan S, Chaudhury G. 1999. Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. Biometals 12(1):1–10.
  • Deveci H. 2002a. Effect of salinity on the oxidative activity of acidophilic bacteria during bioleaching of a complex Zn/Pb sulphide ore. Eur J Miner Process Environ Protec 2:141–150.
  • Deveci H. 2002b. Effect of solids on viability of acidophilic bacteria. Miner Eng 15(12):1181–1189.
  • Dong Y, Lin H, Xu X, Zhou S. 2013. Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals. Hydrometallurgy 140:42–47.
  • Fandrich R, Gu Y, Burrows D, Moeller K. 2007. Modern SEM-based mineral liberation analysis. Int J Miner Process 84(1–4):310–320.
  • Fu B, Zhou H, Zhang R, Qiu G. 2008. Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Intern Biodet Biodegradation 62(2):109–115.
  • Gerhardt P, Murray R, Costilow R, Nester EW, Wood WA, Krieg N, Phillips GB. 1981. Manual of methods for general bacteriology. Washington, DC: American Society for Microbiology, p536.
  • Gericke M, Muller HH, Van Staden PJ, Pinches A. 2008. Development of a tank bioleaching for the treatment of complex Cu-polymetallic concentrates. Hydrometallurgy 94(1–4):23–28.
  • Gu Y. 2003. Automated scanning electron microscope based mineral liberation analysis. An introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng 2:33–41.
  • Hao X, Liu X, Zhu P, Chen A, Liu H, Yin H, Qiu G, Liang Y. 2018. Carbon material with high specific surface area improves complex copper ores’ bioleaching efficiency by mixed moderate thermophiles. Minerals 8(7):301.
  • Hedrich S, Guézennec AG, Charron M, Schippers A, Joulian C. 2016. Quantitative monitoring of microbial species during bioleaching of a copper concentrate. Front Microbiol 7:2044.
  • Holliday JR, Cooke DR. 2007. Advances in geological models and exploration methods for copper ± gold porphyry deposits. In: Milkereit B, editor. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. p791–809.
  • Howard D, Crundwell FK. 1999. A kinetic study of the leaching of chalcopyrite with Sulfolobus metallicus. In: Amils R, Ballester A, editors. Biohydrometallurgy and the environment toward the 21th century, part A. Amsterdam: Elsevier, p209–217.
  • Huang T, Li D. 2014. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy – a presentation. Biotechnol Rep 4:107–119.
  • Johnson DB. 2014. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31.
  • Johnson DB, Kanao T, Hedrich S. 2012. Redox transformation of iron at extremely low pH: fundamentals and applied aspects. Front Microbiol 3:96–117.
  • Jones GC, Corin KC, van Hille RP, Harrison STL. 2011. The generation of toxic reactive oxygen species (ROS) from mechanically activated sulfide concentrates and its effect on thermophilic bioleaching. Miner Eng 24 (11):1198–1208.
  • Kamradt A, Walther S, Schaefer J, Hedrich S, Schippers A. 2018. Mineralogical distribution of base metal sulfides in processing products of black shale-hosted Kupferschiefer-type ore. Miner Eng 119:22–30.
  • Krzanovich D, Conic V, Bugarin D, Jovanovich I, Bozic D. 2019. Maximizing economic performance in the mining industry by applying bioleaching technology for extraction of polymetallic mineral deposits. Minerals 9(7):400.
  • Leathen WW, Mcintyre LD, Braley SA. 1951. A medium for the study of the bacterial oxidation of ferrous iron. Science 114(2959):280–281.
  • Li Q, Yang B, Zhu J, Jiang H, Li J, Zhang R, Sand W. 2018. Comparative analysis of attachment to chalcopyrite of three mesophilic iron and/or sulfur oxidizing acidophiles. Minerals 8(9):406–418.
  • Manafi Z, Abdollahi H, Tuovinen OH. 2013. Shake flask and column bioleaching of a pyritic porphyry copper sulphide ore. Int J Miner Process 119:16–20.
  • Manning HL. 1975. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Appl Microbiol 30(6):1010–1016.
  • Mining Journal. 2005. Special publication. Armenia, London, November, p12. http://www.globalgoldcorp.com/docs/20051101MiningJournal.pdf.
  • Mousavi SM, Yaghmaei S, Vossoughi M, Jafari A, Roostaazad R, Turunen I. 2007. Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains. Hydrometallurgy 85(1):59–65.
  • Muñoz JA, Dreisinger DB, Cooper WC, Young SK. 2007. Silver-catalyzed bioleaching of low-grade copper ores: part I: shake flasks tests. Hydrometallurgy 88(1–4):3–18.
  • Nemati M, Lowenadler J, Harrison STL. 2000. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Appl Microbiol Biotechnol 53(2):173–179.
  • Norizoh S, Toshiyuki N, Yasuhiro K. 2017. Bioleaching of low-grade chalcopyrite ore by the thermophilic archaean Acidianus brierleyi. Solid State Phenom 262:237–241.
  • Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. 2021. Bioleaching and electrochemical behavior of chalcopyrite by a mixed culture at low temperature. Front Microbiol 12:663757.
  • Petersen J. 2016. Heap leaching as a key technology for recovery of values from low-grade ores–a brief overview. Hydrometallurgy 165:206–212.
  • Pirrie D, Rollinson G. 2011. Unlocking the application of automated mineralogy. Geol Today 27(6):226–235.
  • Pogliani C, Fetsis P, Donati E. 2005. Bioleaching of copper sulphide ore by pure and mixed cultures of mesophilic bacteria. Hydrometallurgy 87(3/4):275–281.
  • Pradhan D, Pal S, Sukla LB, Chaudhury GR, Das T. 2008. Bioleaching of low-grade copper ore using indigenous microorganisms. Indian J Chem Technol 15:588–592.
  • Rawlings DE, Johnson DB, editors. 2007. Biomining. Berlin: Springer, p325.
  • Ridley J. 2013. Ore deposit geology. Cambridge (UK): Cambridge University Press, p397.
  • Saitoh N, Nomura T, Konish Y. 2017. Bioleaching of low-grade chalcopyrite ore by the thermophilic archaean Acidianus brierleyi. SSP 262:237–241.
  • Samchuk AI, Pilipenko AT. 1987. Analytical chemistry of minerals. Utrecht: VNU Science Press.
  • Sand W, Gehrke T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157(1):49–56.
  • Sand W, Gehrke T, Jozsa PG, Schippers A. 2001. Biochemistry of bacterial leaching- direct vs. indirect bioleaching. Hydrometallurgy 59(2–3):159–175.
  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL. 2010. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy 104(3–4):342–350.
  • Sillitoe R. 2010. Porphyry copper systems. Econ Geol 105(1):3–41.
  • Silverman MS, Lundgren DG. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77(5):642–647.
  • Sinclair WD. 2007. Porphyry deposits. In: Goodfellow WD, editor. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p223–243.
  • Toma MK, Ruklisha MP, Vanags JJ, Zeltina MO, Lelte MP, Galinine NI, Viesturs UE, Tengerdy RP. 1991. Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol Bioeng 38(5):552–556.
  • Torma AE, Walden CC, Branion RM. 1970. Microbiological leaching of a zinc sulfide concentrate. Biotechnol Bioeng 12(4):501–517.
  • Vardanyan A, Stepanyan S, Vardanyan N, Markosyan L, Sand W, Vera V, Zhang R. 2015. Study and assessment of microbial communities in natural and commercial bioleaching systems. Miner Eng 81:167–172.
  • Vardanyan N, Sevoyan G, Navasardyan T, Vardanyan A. 2019. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium. Environ Technol 40(26):3467–3472.
  • Vardanyan NS. 1998. The influence of environmental factors on the oxidation of pyrite by Sulfobacillus thermosulfidooxidans subsp. asporogenes. Biotechnology 6:48–55.
  • Vardanyan NS. 2003. Oxidation of pyrite and chalcopyrite by mixed cultures of sulfobacilli and other sulphur and iron oxidizing bacteria. Biotechnology 6:79–83.
  • Vardanyan NS, Vardanyan AK. 2018. Thermophilic chemolithotrophic bacteria in mining sites. In: Egamberdieva D, Birkeland NK, Panosyan H, Li WJ, editors. Microorganisms for sustainability, Vol. 8. Singapore: Springer, p187–218.
  • Wang J, Zhu S, Zhang Y, Zhao H, Hu M, Yang C, Qin W, Qiu G. 2014. Bioleaching of low grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. J Cent South Univ 21(2):728–734.
  • Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X. 2020. Effective bioleaching of low-grade copper ores: insights from microbial cross experiments. Bioresour Technol 308:123273.
  • Watling HR, Collinson DM, Li J, Mutch LA, Perrot FA, Rea SM, Reith F, Watkin ELJ. 2014. Bioleaching of a low-grade copper ore, linking leach chemistry and microbiology. Miner Eng 56:35–44.
  • Witne J, Phillips C. 2001. Bioleaching of Ok Tedi copper concentrate in oxygen- and carbon dioxide-enriched air. Miner Eng 14(1):25–48.
  • Yang Y, Diao M, Liu K, Qian L, Nguyen AV, Qiu G. 2013. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp. Hydrometallurgy 131–132:93–98.
  • Yin S, Wang L, Kabwe E, Chen X, Yan R, An K, Zhang L, Wu A. 2018. Copper bioleaching in China: review and prospect. Minerals 8(2):32–26.
  • Zhang Ys, Qin WQ, Wang J, Zhen SJ, Yang CR, Zhang JW, Nai SS, Qiu GZ. 2008. Bioleaching of chalcopyrite by pure and mixed culture. Trans Nonferrous Met Sci China 18(6):1491–1496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.