204
Views
1
CrossRef citations to date
0
Altmetric
Articles

Assessment of Biofilm Inhabitants of Deteriorated Surfaces of Heritage Sites

, , &
Pages 906-915 | Received 24 Sep 2021, Accepted 20 Jun 2022, Published online: 14 Jul 2022

References

  • Agrawal O, Dhawan S, Garg K, Shaheen F, Pathak N, Misra A. 1988. Study of biodeterioration of the Ajanta wall paintings. Int Biodeterior 24(2):121–129.
  • Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbø CL, Wishart DS. 2012. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40(Web Server issue):W88–W95.
  • Barrionuevo MR, Englert GE, Gaylarde CC. 2016. Physical and microbiological analysis of sandstone deterioration in the Argentine Jesuit missions. Geomicrobiol J 33(8):671–676.
  • Bellezza S, Albertano P, de Philippis R, Paradossi G. 2006. Exopolysaccharides of two cyanobacterial strains from Roman hypogea. Geomicrobiol J 23(5):301–310.
  • Bhatnagar P, Khan AA, Jain SK, Rai M. 2010. Biodeterioration of archaeological monuments and approach for restoration. In: Jain SK, Khan AA, Rai MK (eds) Geomicrobiology. Enfield: CRC Press Science Publishers, p255–302.
  • Bruno L, Billi D, Albertano P, Urzí C. 2006. Genetic characterization of epilithic cyanobacteria and their associated bacteria. Geomicrobiol J 23(5):293–299.
  • Carlo ED, Barresi G, Palla F. 2017. Biodeterioration. In: Palla F, Barresi G. (eds) Biotechnology and Conservation of Cultural Heritage. Cham: Springer, p1–30.
  • Cennamo P, Montuori N, Trojsi G, Fatigati G, Moretti A. 2016. Biofilms in churches built in grottoes. Sci Total Environ 543(Pt A):727–738.
  • Chimienti G, Piredda R, Pepe G, van der Werf ID, Sabbatini L, Crecchio C, Ricciuti P, D'Erchia AM, Manzari C, Pesole G. 2016. Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Appl Microbiol Biotechnol 100(19):8537–8548.
  • Dakal TC, Cameotra SS. 2012. Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24(1):1–13.
  • Duan Y, Wu F, He D, Gu J-D, Feng H, Chen T, Liu G, Wang W. 2021. Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China. Int Biodeterior Biodegrad 163:105267.
  • Dyda M, Decewicz P, Romaniuk K, Wojcieszak M, Sklodowska A, Dziewit L, Drewniak L, Laudy A. 2018. Application of metagenomic methods for selection of an optimal growth medium for bacterial diversity analysis of microbiocenoses on historical stone surfaces. Int Biodeterior Biodegrad 131:2–10.
  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470.
  • Gallego-Cartagena E, Morillas H, Maguregui M, Patiño-Camelo K, Marcaida I, Morgado-Gamero W, Silva LF, Madariaga JM. 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int Biodeterior Biodegrad 147:104874.
  • Gaylarde C. 2020. Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 3(4):1469–1482.
  • Ghosh S, Qureshi A, Purohit HJ. 2017a. Biofilm microenvironments: modeling approach. In: Purohit H, Kalia V, Vaidya A, Khardenavis A (eds) Optimization and Applicability of Bioprocesses. Singapore: Springer, p305–323.
  • Ghosh S, Qureshi A, Purohit HJ. 2017b. Enhanced expression of catechol 1, 2 dioxygenase gene in biofilm forming Pseudomonas mendocina EGD-AQ5 under increasing benzoate stress. Int Biodeterior Biodegrad 118:57–65.
  • Ghosh S, Qureshi A, Purohit HJ. 2019. D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. J Biosci 44(1):1–10.
  • Grottoli A, Beccaccioli M, Zoppis E, Fratini RS, Schifano E, Santarelli ML, Uccelletti D, Reverberi M. 2020. Nanopore sequencing and bioinformatics for rapidly identifying cultural heritage spoilage microorganisms. Front Mater 7:14.
  • Gulotta D, Villa F, Cappitelli F, Toniolo L. 2018. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Sci Total Environ 639:1480–1490.
  • Guo Y, Hu D, Guo J, Wang T, Xiao Y, Wang X, Li S, Liu M, Li Z, Bi D, et al. 2017. Riemerella anatipestifer type IX secretion system is required for virulence and gelatinase secretion. Front Microbiol 8:2553.
  • Gutarowska B, Celikkol-Aydin S, Bonifay V, Otlewska A, Aydin E, Oldham AL, Brauer JI, Duncan KE, Adamiak J, Sunner JA, et al. 2015. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings. Front Microbiol 6:979.
  • Huang Z, Zhao F, Li Y, Zhang J, Feng Y. 2017. Variations in the bacterial community compositions at different sites in the tomb of Emperor Yang of the Sui Dynasty. Microbiol Res 196:26–33.
  • Laiz L, Piñar G, Lubitz W, Saiz‐Jimenez C. 2003. Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5(1):72–74.
  • Laiz L, Romanowska-Deskins A, Saiz-Jimenez C. 2011. Survival of a bacterial/archael consortium on building materials as revealed by molecular methods. Int Biodeterior Biodegrad 65(7):1100–1103.
  • Li Q, Zhang B, Yang X, Ge Q. 2018. Deterioration-associated microbiome of stone monuments: structure, variation, and assembly. Appl Environ Microbiol 84(7):e02680–e02717.
  • Lyalikova NN, Petushkova YP. 1991. Role of microorganisms in the weathering of minerals in building stone of historical buildings. Geomicrobiol J 9(2-3):91–101.
  • Mammola S, Piano E, Cardoso P, Vernon P, Domínguez-Villar D, Culver DC, Pipan T, Isaia M. 2019. Climate change going deep: the effects of global climatic alterations on cave ecosystems. Anthr Rev 6(1-2):98–116.
  • Mansch R, Bock E. 1998. Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9(1):47–64.
  • Marvasi M, Cavalieri D, Mastromei G, Casaccia A, Perito B. 2019. Omics technologies for an in-depth investigation of biodeterioration of cultural heritage. Int Biodeterior Biodegrad 144:104736.
  • Mazzoli R, Giuffrida MG, Pessione E. 2018. Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts.” Appl Microbiol Biotechnol 102(15):6393–6407.
  • Mehta D, Shah D. 2021. Cyanobacteria and microalgae growing on monuments of UNESCO World Heritage site Champaner Pavagadh, India: biofilms and their exopolysaccharide composition. Arch Microbiol 203(6):3425–3433.
  • Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, et al. 2008. The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9(1):1–8.
  • Michaelsen A, Pinar G, Montanari M, Pinzari F. 2009. Biodeterioration and restoration of a 16th-century book using a combination of conventional and molecular techniques: a case study. Int Biodeterior Biodegrad 63(2):161–168.
  • Mitchell R, Gu J-D. 2000. Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int Biodeterior Biodegrad 46(4):299–303.
  • Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:11257.
  • Mohammadi P, Gholami-Nejad P, Asghari-Daryasari R, Asgarani E. 2020. The study of microbial communities of Rudkhan castle. Geomicrobiol J 37(2):119–129.
  • Niesler A, Górny RL, Wlazło A, Łudzeń-Izbińska B, Ławniczek-Wałczyk A, Gołofit-Szymczak M, Meres Z, Kasznia-Kocot J, Harkawy A, Lis DO, et al. 2010. Microbial contamination of storerooms at the Auschwitz-Birkenau Museum. Aerobiologia 26(2):125–133.
  • Pal S, Qureshi A, Purohit HJ. 2016. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia 71(3):239–246.
  • Pinheiro AC, Mesquita N, Trovão J, Soares F, Tiago I, Coelho C, de Carvalho HP, Gil F, Catarino L, Piñar G, et al. 2019. Limestone biodeterioration: a review on the Portuguese cultural heritage scenario. J Cult Heritage 36:275–285.
  • Popović S, Krizmanić J, Vidaković D, Jakovljević O, Trbojević I, Predojević D, Vidović M, Subakov Simić G. 2020. Seasonal dynamics of cyanobacteria and algae in biofilm from the entrance of two caves. Geomicrobiol J 37(4):315–326.
  • Pyzik A, Ciuchcinski K, Dziurzynski M, Dziewit L. 2021. The bad and the good—microorganisms in cultural heritage environments—an update on biodeterioration and biotreatment approaches. Materials 14(1):177.
  • Sáiz-Jiménez C, Laiz L. 2000. Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeterior Biodegrad 46(4):319–326.
  • Savvides AL, Nikolakopoulou TL, Kyratsous N, Katsifas EA, Kanini G, Karagouni AD. 2014. Bacterial deterioration of marble monuments: a case study of the conservation project of acropolis monuments. Geomicrobiol J 31(8):726–736.
  • Singh S, Dhyani S, Kokate P, Chakraborty S, Nimsadkar S. 2019. Deterioration of world heritage cave monument of Ajanta, India: insights to important biological agents and environment friendly solutions. Heritage 2(3):2545–2554.
  • William S, Feil H, Copeland A. 2004. Bacterial DNA Isolation CTAB Protocol Bacterial Genomic DNA Isolation Using CTAB Materials & Reagents. Doe Joint Genome Institute, 4.
  • Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G, et al. 2011. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29(5):415–420.
  • Zammit G. 2019. Phototrophic biofilm communities and adaptation to growth on ancient archaeological surfaces. Ann Microbiol 69(10):1047–1058.
  • Zanardini E, May E, Inkpen R, Cappitelli F, Murrell JC, Purdy KJ. 2016. Diversity of archaeal and bacterial communities on exfoliated sandstone from Portchester Castle (UK). Int Biodeterior Biodegrad 109:78–87.
  • Zhang X, Ge Q, Zhu Z, Deng Y, Gu J-D. 2018. Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. Int Biodeterior Biodegrad 134:127–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.