504
Views
5
CrossRef citations to date
0
Altmetric
Review

Microbial Induced Carbonate Precipitation: Environments, Applications, and Mechanisms

, , &
Pages 833-851 | Received 17 Jan 2022, Accepted 22 Jun 2022, Published online: 20 Jul 2022

References

  • Achal V, Mukherjee A. 2015. A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235.
  • Achal V, Mukerjee A, Reddy MS. 2013. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5.
  • Adetutu EM, Thorpe K, Shahsavari E, Bourne S, Cao X, Fard RMN, Kirby G, Ball AS. 2012. Bacterial community survey of sediments at Naracoorte Caves, Australia. IJS 41(2):137–147.
  • Al Qabany A, Soga K, Santamarina C. 2012. Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001.
  • Aloisi G, Gloter A, Krüger M, Wallmann K, Guyot F, Zuddas P. 2006. Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34(12):1017–1020.
  • Altermann, W, Kazmierczak J, Oren, A, Wright DT. 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of earth history. Geobiol 4:147–166.
  • Banerjee S, Joshi SR. 2014. Ultrastructural analysis of calcite crystal patterns formed by biofilm bacteria associated with cave speleothems. J Microsc Ultrastruct 2(4):217–223.
  • Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizzo JG, Bullen HA, Hoehler TM, Barton HA. 2010. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J 27(5):444–454.
  • Barton HA, Northup DE. 2007. Geomicobiology in cave environments: Past, current and future perspectives. J Caves Karst Stud 69:163–178.
  • Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL. 2007. The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. IJS 36(2):93–104.
  • Barton HA, Taylor MR, Pace NR. 2004. Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21(1):11–20.
  • Baskar S, Baskar R, Kaushik A. 2007. Evidences for microbial involvement in the genesis of speleothem carbonates, Borra Caves, Visakhapatnam, India. Curr Sci 92(3):350–355. https://www.jstor.org/stable/24096731.
  • Baskar S, Baskar R, Lee N, Theophilus PK. 2009. Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. Environ Geol 57(5):1169.
  • Baskar S, Baskar R, Mauclaire L, McKenzie JA. 2005. Role of microbial community in stalactite formation, Sahastradhara Caves, Dehradun, India. Curr Sci 88(8):1305–1308. https://www.jstor.org/stable/24110302.
  • Baskar S, Baskar R, Mauclaire L, McKenzie JA. 2006. Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci 90(1):58–64. https://www.jstor.org/stable/24089018.
  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT. 2006. Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185(3–4):131–145.
  • Beaumont J. 1676. Two letters concerning rock plants and their growth: The second letter of June 17, 1676. Philos Trans R Soc 11:732–742. (quoted in Barns et al. 2010).
  • Behrendt L, Trampe EL, Nord NB, Nguyen J, Kühl M, Lonco D, Nyarko A, Dhinojwala A, Hershey OS, Barton H. 2020. Life in the dark: far‐red absorbing cyanobacteria extend photic zones deep into terrestrial caves. Environ Microbiol 22(3):952–963.
  • Behzadipour H, Pakbaz MS, Ghezelbash GR. 2020. Effects of biocementation on strength parameters of silty and clayey sands. Bioinsp Biomim Nanobiomater 9(1):24–32.
  • Ben CK, Rodriguez-Navarro C, Gonzalez-Munoz MT, Arias JM, Cultrone G, Rodriguez-Gallego M. 2004. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. J Sed Res 74(6):868–876.
  • Bennett PC, Rogers JR, Choi WJ, Hiebert FK. 2001. Silicates, silicate weathering, and microbial ecology. Geol J 18(1):3–19.
  • Bindschedler S, Cailleau G, Verrecchia E. 2016. Role of fungi in the biomineralization of calcite. Minerals 6(2):41.
  • Blyth AJ, Frisia S. 2008. Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geol J 25(2):101–111.
  • Boquet E, Boronat A, Ramos-Cormenzana A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246(5434):527–529.
  • Braissant O, Cailleau G, Dupraz C, Verrecchia EP. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sed Res 73(3):485–490.
  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher P. 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411.
  • Cacchio P, Contento R, Ercole C, Cappuccio G, Martinez MP, Lepidi A. 2004. Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy). Geomicro J 21(8):497–509.
  • Cacchio P, Ferrini G, Ercole C, Del Gallo M, Lepidi A. 2014. Biogenicity and characterization of moonmilk in the Grotta Nera (Majella National Park, Abruzzi, central Italy). JCKS 76(2):88–103.
  • Cañaveras JC, Hoyos M, Sanchez-Moral S, Sanz-Rubio E, Bedoya J, Soler V, Saiz-Jimenez C. 1999. Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrol J 16(1):9–25.
  • Carlucci A, Raimondo ML, Santos J, Phillips AJ. 2012. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Perso J 28:34–48.
  • Carmona JP, Venda Oliveira PJ, Lemos LJ, Pedro AM. 2018. Improvement of a sandy soil by enzymatic calcium carbonate precipitation. Proc Inst Civil Eng Geotech Eng 171(1):3–15.
  • Carniello V, Hou J, van der Mei HC, Busscher HJ. 2016. The transition from bacterial adhesion to the production of EPS and biofilm formation. In Flemming H-C, Neu TR, Wingender J, editors. The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). London: IWA Publishing, p61–78.
  • Castanier S, Le Metayer-Levrel G, Perthuisot JP. 2000. Bacterial roles in the precipitation of carbonate minerals. In: Microbial Sediments. Berlin; Heidelberg: Springer Berlin Heidelberg, p32–39.
  • Cheeptham N. 2013. Advances and challenges in studying cave microbial diversity. In: Cave Microbiomes: A Novel Resource for Drug Discovery. New York, NY: Springer, p1–34.
  • Chen S, Cheng M, Guo Z, Xu W, Du X, Li Y. 2020. Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: evidence from a combination of observations and emissions. Environ Pollut 263(Pt B):114421.
  • Cheng L, Cord-Ruwisch R, Shahin MA. 2013. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50(1):81–90.
  • Chen HJ, Tsai TM, Wu CH. 2021. Research on the feasibility of strengthening the soil structure by biomineralization. J Chin Inst Eng 44(3):214–222.
  • Choi SG, Chang I, Lee M, Lee JH, Han JT, Kwon TH. 2020. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Const Build Mater 246:118415.
  • Claus G. 1955. Algae and their mode of life in the baradla cave at aggtelek II. Int J Sepleol 19(1):2.
  • Cuadros J. 2017. Clay minerals interaction with microorganisms: a review. Clay Miner 52(2):235–261.
  • Cuezva S, Sanchez-Moral S, Saiz-Jimenez C, Cañaveras JC. 2009. Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int J Speleol 38(1):9.
  • Daskalakis MI, Rigas F, Bakolas A, Magoulas A, Kotoulas G, Katsikis I, Karageorgis AP, Mavridou A. 2015. Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania, Athens, Greece. Int Biodeterior Biodegrad 99:73–84.
  • Davey ME, O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867.
  • Dejong JT, Soga K, Kavazanjian E, Burns S, Van Paassen LA, Al Qabany A, Aydilek A, Bang SS, Burbank M, Caslake LF, et al. 2013. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63(4):287–301.
  • Dhami NK, Mukherjee A, Watkin EL. 2018. Microbial diversity and mineralogical mechanical properties of calcitic cave speleothems in natural and in vitro biomineralization conditions. Front Microbiol 9(40):40.
  • Dittrich M, Obst M. 2004. Are picoplankton responsible for calcite precipitation in lakes? AMBIO 33(8):559–564.
  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP. 2004. Microbe– mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51(4):745–765.
  • Engel AS. 2010. Microbial diversity of cave ecosystems. In: Geomicrobiology: Molecular and Environmental Perspective. Dordrecht: Springer, p219–238.
  • Engel AS, Meisinger DB, Porter ML, Payn RA, Schmid M, Stern LA, Schleifer KH, Lee NM. 2010. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J 4(1):98–110.
  • Engel AS, Stern LA, Bennett PC. 2004. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32(5):369–372.
  • Enyedi NT, Makk J, Kótai L, Berényi B, Klébert S, Sebestyén Z, Molnár Z, Borsodi AK, Leél-Őssy S, Demény A, et al. 2020. Cave bacteria-induced amorphous calcium carbonate formation. Sci Rep 10(1):1–12.
  • Ercole C, Cacchio P, Cappuccio G, Lepidi A. 2001. Deposition of calcium carbonate in karst caves: role of bacteria in Stiffe's Cave. Int J Speleol 30(1):6.
  • Fang C, Kumari D, Zhu X, Achal V. 2018. Role of fungal-mediated mineralization in biocementation of sand and its improved impressive strength. Int Biodeterior Biodegrad 133:216–220.
  • Farhadi S, Ziadloo S. 2020. Self-healing microbial concrete–a review. MSF 990:8–12.
  • Ferris FG, Fratton CM, Gerits JP, Schultze-Lam S, Lollar BS. 1995. Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol J 13(1):57–67.
  • Ferris FG, Fyfe WS, Beveridge TJ. 1988. Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16(2):149–152.
  • Fiore S, Dumontet S, Huertas FJ, Pasquale V. 2011. Bacteria-induced crystallization of kaolinite. Appl Clay Sci 53(4):566–571.
  • Flemming HC, Neu TR, Wingender J. 2016. The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). London: IWA Publishing.
  • Flemming HC, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17(4):247–260.
  • Fortin D, Grant F, Steven DS. 1998. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the southern explorer ridge in the Northeast Pacific Ocean. Am Min 83:1399–1408.
  • Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(Pt 3):609–643.
  • Garcia MG, Marco Antonio MG, Claudia Ximena MH. 2016. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiol Res 182:21–30.
  • Garland JL. 1999. Potential and limitations of BIOLOG for microbial community analysis. In:. Proceedings of the 8th International Symposium on Microbial Ecology Microbial Biosystems: New Frontiers, p1–7.
  • Glasauer S, Langley S, Beveridge TJ. 2001. Sorption of Fe (hydr) oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Appl Environ Microbiol 67(12):5544–5550.
  • Gounot AM. 1967. Role biologique des Arthrobacter dans les limons souterrains. Ann Inst Pasteur Paris 113:923–945.
  • Gradzinski M. 1999. Role of micro-organisms in cave pearls formation. J Conf Abst 24:924.
  • Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA. 2008. A diversity profile of the human skin microbiota. Genome Res 18(7):1043–1050.
  • Han L, Li J, Xue Q, Chen Z, Zhou Y, Poon CS. 2020. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: a critical review. Sci Total Environ 746:140967.
  • Hill CA, Forti P. 1997. Cave Minerals of the World. 2nd ed. Huntsville, AL: National Speleological Society, p463.
  • Høeg OA. 1946. Cyanophyceae and bacteria in calcareous sediments in the interior of limestone caves in nord-rana, Norway. Nyatt Mag Naturvidenskapene 85:99–104.
  • Hoffman l. 1989. Algae of terrestrial habitats. Bot Rev 55:77–105.
  • Ismail MA, Joer HA, Randolph MF, Meritt A. 2002. Cementation of porous materials using calcite. Geotechnique 52(5):313–324.
  • Jack TR. 1993. MORE to MEOR: an overview of microbially enhanced oil recovery. Dev Petro Sci 39:7–16.
  • Jones B. 2010. Microbes in caves: agents of calcite corrosion and precipitation. Geolog Soc Lond Spec Publ 336(1):7–30.
  • Jones B, Renaut RW. 2017. Modern travertine precipitation at Lýsuhóll hot springs, Snæfellnes, Iceland: implications for calcite crystal growth. J Sed Res 87:11.
  • Joosten HJ. 1954. The Joosten Process for Chemical Soil Solidification and Sealing and Its Development from 1925 to Date. Amsterdam: N.V. Amsterdamsche Ballast Maatschappij, p46.
  • Kakelar M, Yavari M, Yousefi MR, Nimtaj A. 2020. The influential factors in the effectiveness of Microbial Induced Carbonate Precipitation (MICP) for soil consolidation. J Hum Environ Health Promot 6(1):40–46.
  • Kalkan E. 2020. A review on the microbial induced carbonate precipitation MICP for soil stabilization. Int J Earth Sci Knowl Appl 2(1):38–47.
  • Kamennaya NA, Ajo-Franklin CM, Northen T, Jansson C. 2012. Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2(4):338–364.
  • Kantzas A, Stehmeier L, Marentette DF, Ferris FG, Jha KN, Maurits FM. 1992. A novel method of sand consolidation through bacteriogenic mineral plugging. In: Annual Tech Meetg Petro of Canada.
  • Kazemian S, Huat BB. 2010. Assessment of stabilization methods for soft soils by admixtures. In: 2010 International Conference on Scientific and Social Science Research (CSSR), p118–121.
  • Khadim HJ, Ammar SH, Ebrahim SE. 2019. Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil. Environ Tech Innov 14:100315.
  • Kimble JC, Winter AS, Spilde MN, Sinsabaugh RL, Northup DE. 2018. A potential central role of Thaumarchaeota in N-Cycling in a semi-arid environment, Fort Stanton Cave, Snowy River passage, New Mexico, USA. FEMS Microbiol Ecol 94(11):173.
  • Kluczek-Turpeinen B, Maijala P, Hofrichter M, Hatakka A. 2007. Degradation and enzymatic activities of three Paecilomyces inflatus strains grown on diverse lignocellulosic substrates. Int Biodeterior Biodegrad 59(4):283–291.
  • Kondratyeva L, Polevskaya O, Litvinenko Z, Golubeva E, Konovalova N. 2016. Role of the microbial community in formation of speleothem (moon milk) in the Snezhnaya carst cave (abkhazia). Microbiology 85(5):629–637.
  • Krumbein WE. 1974. On the precipitation of aragonite on the surface of marine bacteria. Naturwissenschaften 61(4):167–167.
  • Leonel C, Sena IFG, Silva WN, Prazeres PHDM, Fernandes GR, Mancha Agresti P, Martins Drumond M, Mintz A, Azevedo VAC, Birbrair A. 2019. Staphylococcus epidermidis role in the skin microenvironment. J Cell Mol Med 23(9):5949–5955.
  • Li W, Liu LP, Zhou PP, Cao L, Yu LJ, Jiang SY. 2011. Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. Curr Sci. 502–508. https://www.jstor.org/stable/24073085.
  • Lin D, Ma W, Jin Z, Wang Y, Huang Q, Cai P. 2016. Interactions of EPS with soil minerals: a combination study by ITC and CLSM. Colloids Surf B Biointerfaces 138:10–16.
  • Li Z, Wright ADG, Yang Y, Si H, Li G. 2017. Unique bacteria community composition and co-occurrence in the milk of different ruminants. Sci Rep 7(1):1–9.
  • Lower SK, Tadanier CJ, Hochella MF. 2000. Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy. Geochim Cosmochim Acta 64(18):3133–3139.
  • Lünsdorf H, Erb RW, Abraham WR, Timmis KN. 2000. Clay hutches': a novel interaction between bacteria and clay minerals. Environ Microbiol 2(2):161–168.
  • Luo J, Chen X, Crump J, Zhou H, Davies DG, Zhou G, Zhang N, Jin C. 2018. Interactions of fungi with concrete: significant importance for bio-based self-healing concrete. Const Build Mater 164:275–285.
  • Maciejewska M, Adam D, Naômé A, Martinet L, Tenconi E, Całusińska M, Delfosse P, Hanikenne M, Baurain D, Compère P, et al. 2017. Assessment of the potential role of streptomyces in cave moonmilk formation. Front Microbiol 8:1181.
  • Marín S, Cabestrero O, Demergasso C, Olivares S, Zetola V, Vera M. 2021. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries. Acta Biomater 120:304–317.
  • Martiny AC. 2019. High proportions of bacteria are culturable across major biomes. ISME J 13(8):2125–2128.
  • Martuscelli C, Soares C, Camões A, Lima N. 2020. Potential of fungi for concrete repair. Proc Manuf. 46:180–185.
  • Miller JD. 1992. Fungi as contaminants in indoor air. Atmos Environ A Gen Top. 26(12):2163–2172.
  • Monger HC, Daugherty LA, Lindemann WC, Liddell CM. 1991. Microbial precipitation of pedogenic calcite. Geology 19(10):997–1000.
  • Montaño-Salazar SM, Lizarazo-Marriaga J, Brandão PF. 2018. Isolation and potential biocementation of calcite precipitation inducing bacteria from Colombian buildings. Curr Microbiol 75(3):256–265.
  • Moravej S, Habibagahi G, Nikooee E, Niazi A. 2018. Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma 315:130–137.
  • Morita RY. 1980. Calcite precipitation by marine bacteria. Geomicrobiol J 2(1):63–82.
  • Mudgil D, Baskar S, Baskar R, Paul D, Shouche YS. 2018. Biomineralization potential of Bacillus subtilis, Rummeliibacillus stabekisii and Staphylococcus epidermidis strains in vitro isolated from Speleothems, Khasi Hill Caves, Meghalaya, India. Geomicrobiol J 35(8):675–694.
  • Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. 2020. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11:928.
  • Mujah D, Shahin MA, Cheng L. 2017. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol J 34(6):524–537.
  • Mulec J. 2018. Phototrophs in caves. In: Moldovan O, Kováč Ľ, Halse S, editors. Cave Ecology. Ecological Studies (Analysis and Synthesis), Vol. 235. Cham: Springer.
  • Mulec J, Kosi G, Vrhovšek D. 2008. Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70(1):3–12.
  • Nash MC, Diaz-Pulido G, Harvey AS, Adey W. 2019. Coralline algal calcification: a morphological and process-based understanding. PLoS One 14(9):e0221396.
  • Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J. 2002. Living bacteria in silica gels. Nat Mater 1(1):42–44.
  • Niu J, Liu Q, Lv J, Peng B. 2020. Review on microbial enhanced oil recovery: mechanisms, modelling and field trials. J Petro Sci Eng 192:107350.
  • Northup DE, Dahm CN, Melim LA, Spilde MN, Crossey LJ, Lavoie KH, Barns SM. 2000. Evidence for geomicrobiological interactions in Guadalupe caves. J Cave Kars Stud 62(2):80–90.
  • Northup DE, Kathleen H, Lavoie D. 2001. Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222.
  • Okyay TO, Nguyen HN, Castro SL, Rodrigues DF. 2016. CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Sci Total Environ 572:671–680.
  • Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson WM, Wing RA, Soderlund CA, Pryor BM, Maier RM. 2014. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8(2):478–491.
  • Ostrofsky ML, Miller C. 2017. Photosynthetically-mediated calcite and phosphorus precipitation by submersed aquatic vascular plants in Lake Pleasant, Pennsylvania. Aquat Bot 143:36–40.
  • Oyediran IA, Ayeni OO. 2020. Comparative effect of microbial induced calcite precipitate, cement and rice husk ash on the geotechnical properties of soils. SN Appl Sci 2:1–12.
  • Pacton M, Breitenbach SFM, Lechleitner FA, Vaks A, Rollion-Bard C, Gutareva OS, Osintcev AV, Vasconcelos C. 2013. The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia–paleoenvironmental implications. Biogeosciences 10(9):6115–6130.
  • Park S, Cho YJ, Jung DY, Jo KN, Lee EJ, Lee JS. 2020. Microbial diversity in moonmilk of Baegnyong Cave, Korean CZO. Front Microbiol 11:613.
  • Pasquale V, Fiore S, Hlayem D, Lettino A, Huertas FJ, Chianese E, Dumontet S. 2019. Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. Int Biodeterior Biodegrad 140:57–66.
  • Ramachandran SK, Ramakrishnan V, Bang SS. 2001. Remediation of concrete using micro-organisms. ACI Mater J Am Concr Inst 98(1):3–9.
  • Ramakrishnan V, Panchalan RK, Bang SS, City R. 2005. Improvement of concrete durability by bacterial mineral precipitation. Proc ICF 11:357–367.
  • Riding RE. 2000. Microbial carbonate: the geological record of calcified algal mats and biofilms. Sedimentology 47(1):179–214.
  • Rivadeneyra MA, Delgado R, del Moral A, Ferrer MR, Ramos-Cormenzana A. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol Ecol 13(3):197–204.
  • Roberts JA, Bennett PC, González LA, Macpherson GL, Milliken KL. 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology 32(4):277–280.
  • Roldán M, Hernández-Mariné M. 2009. Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves. Int J Speleol 38(1):41–53.
  • Rumbaugh KP, Sauer K. 2020. Biofilm dispersion. Nat Rev Microbiol 18(10):571–586.
  • Rusznyák A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU, Neu TR, Frosch T, Popp J, Keiner R, Geletneky J, et al. 2012. Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic Herrenberg cave. Appl Environ Microbiol 78(4):1157–1167.
  • Sanchez-Moral S, Canaveras JC, Laiz L, Sáiz-Jiménez C, Bedoya J, Luque L. 2003. Biomediated precipitation of calcium carbonate metastable phases in hypogean environments: a short review. Geomicrobiol J 20(5):491–500.
  • Sanchez-Moral S, Portillo MC, Janices I, Cuezva S, Fernandez-Cortes A, Cañaveras JC, Gonzalez JM. 2012. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology 139–140:285–292.
  • Sánchez-Román M, Fernández-Remolar D, Amils R, Sánchez-Navas A, Schmid T, San Martin-Uriz P, Rodríguez N, McKenzie JA, Vasconcelos C. 2014. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Sci Rep 4(1):4767–4767.
  • Santhosh SSB, Ramachandran K, Ramakrishnan V. 2001. Microorganisms, remediation of concrete using. Microorg Remediat Concr Using 98(1):3–9.
  • Saravanan A, Kumar PS, Vardhan KH, Jeevanantham S, Karishma SB, Yaashikaa PR, Vellaichamy P. 2020. A review on systematic approach for microbial enhanced oil recovery technologies: opportunities and challenges. J Clean Prod 258:120777.
  • Schopf JW. 2006. The first billion years: when did life emerge? Elements 2(4):229–233.
  • Schwantes-Cezario N, Medeiros LP, De Oliveira AG Jr., Nakazato G, Kobayashi RKT, Toralles BM. 2017. Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. Int Biodeterior Biodegrad 123:200–205.
  • Serra DO, Hengge R. 2014. Stress responses go three dimensional–the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol 16(6):1455–1471.
  • Serra DO, Richter AM, Klauck G, Mika F, Hengge R. 2013. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4(2):1–12.
  • Spadafora A, Perri E, McKenzie JA, Vasconcelos C. 2010. Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology 57(1):27–40.
  • Stocks-Fischer S, Galinat JK, Bang SS. 1999. Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571.
  • Strokova V, Duhanina U, Balitsky D. 2020. The study of the quartz sand bio consolidation processes as a result of carbonate mineralization by urolithic bacteria. MSF 1011:44–51.
  • Su F, Yang YY. 2021. Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge. J Appl Microbiol 131(1):236–256.
  • Taylor M, Simkiss K, Greaves GN. 1986. Amorphous structure of intracellular mineral granules. Biochem Soc Trans 14(3):549–552.
  • Tazaki K. 2005. Microbial formation of a halloysite-like mineral. Clays Clay Miner 53(3):224–233.
  • Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Staudigel H. 2015. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Front Microbiol 6:179.
  • Toporski JK, Steele A, Westall F, Thomas-Keprta KL, McKay DS. 2002. The simulated silicification of bacteria-new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2(1):1–26.
  • Tourney J, Ngwenya BT. 2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132.
  • Ueshima M, Tazaki K. 2001. Possible role of microbial polysaccharides in nontronite formation. Clays Clay Miner 49(4):292–299.
  • Urrutia M, Kemper M, Doyle R, Beveridge TJ. 1992. The membrane-induced proton motive force influences the metal binding activity of Bacillus subtilis cell walls. Appl Environ Microbiol 58(12):3837–3844.
  • Urzì C, De Leo F, Bruno L, Albertano P. 2010. Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60(1):116–129.
  • Vahabi A, Ramezanianpour AA, Akbari NK. 2015. A preliminary insight into the revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent. Eur J Environ Civil Eng 19(5):614–627.
  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W. 2010. Use of bacteria to repair cracks in concrete. Cem Conc Res 40(1):157–166.
  • Vezzulli L, Pezzati E, Brettar I, Höfle M, Pruzzo C. 2015. Effects of global warming on vibrio ecology. Microbiol Spectr 3(3):1–9.
  • Visscher PT, Reid RP, Bebout BM. 2000. Micro scale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28(10):919–922.
  • Wang H, Cuiping Z, Qianying L, Deng L, Xuan Q, Linfeng G. 2009. Calcium carbonate precipitation induced by a bacterium strain isolated from an oligotrophic cave in Central China. Front Earth Sci China 4(2):148–151.
  • Watnick P, Kolter R. 2000. Biofilm, city of microbes. J Bacteriol 182(10):2675–2679.
  • Wei S, Cui H, Jiang Z, Liu H, He H, Fang N. 2015. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz J Microbiol 46(2):455–464.
  • Wiktor V, Jonkers HM. 2011. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Comp 33(7):763–770.
  • Winterkorn HF, Pamukcu S. 1991. Soil stabilization and grouting. In: Found Engineering Handbook. Boston, MA: Springer, p317–378.
  • World Health Organization. 1986. Ammonia. World Health Organization, p13. Available at https://apps.who.int/-iris/handle/10665/39087.
  • Wright DT, Wacey D. 2005. Precipitation of dolomite using sulphate reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52(5):987–1008.
  • Zhong L, Islam MR. 1995, January. A new microbial plugging process and its impact on fracture remediation. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.