203
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Phosphate Solubilizing and Phytate Degrading Streptomyces Isolates Stimulate the Growth and P Accumulation of Maize (Zea mays) Fertilized with Different Phosphorus Sources

, ORCID Icon, &
Pages 325-336 | Received 27 Apr 2022, Accepted 06 Jan 2023, Published online: 22 Jan 2023

References

  • Aallam Y, Dhiba D, Lemriss S, Souiri A, Karray F, Rasafi TE, Saïdi N, Haddioui A, El Kabbaj S, Virolle MJ, et al. 2021. Isolation and characterization of phosphate solubilizing Streptomyces sp. endemic from sugar beet fields of the Beni-Mellal region in Morocco. Microorganisms 9(5):914.
  • Aallam Y, Dhiba D, Rasafi TE, Lemriss S, Haddioui A, Tarkka M, Hamdali H. 2022. Growth promotion and protection against root rot of sugar beet (Beta vulgaris L.) by two rock phosphate and potassium solubilizing Streptomyces spp. under greenhouse conditions. Plant Soil 472(1–2):407–420.
  • Adesemoye AO, Kloepper JW. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12.
  • Ahemad M, Khan MS. 2011. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62(2):532–538.
  • Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163: 173–181.
  • Association of Official Analytical Chemists. 1990. Phytate in foods, anion-exchange method, No. 986.11. In: Official Methods of Analysis. 15th ed. Arlington: Association of Official Analytical Chemists, p800–801.
  • Barreto TR, Silva ACM, Soares ACF, de Souza JT. 2008. Popultion densities and genetic diversity of actinomycete associated to the rhizosphere of Theobroma cacao. Braz J Microbiol 39(3):464–470.
  • Boubekri K, Soumare A, Mardad I, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L. 2021. The Screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms 9(3):470.
  • Bremner JM. 1996. Nitrogen total. In: Sparks, DL, editor. Methods of Soil Analysis, Part 3: Chemical Methods, SSSA Book Series 5. Madison, WI: Soil Science Society of America, p1085–1122.
  • Chen W, Yang F, Zhang L, Wang J. 2016. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J 33(10):870–877.
  • Debnath D, Sahu NP, Pal AK, Baruah K, Yengkokpam S, Mukherjee SC. 2005. Present scenario and future prospects of phytase in aquafeed – review. Asian Australas J Anim Sci 18(12):1800–1812.
  • Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A. 2022. Phosphate bacterial solubilization: a key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res 38:13–28.
  • El-Mergawi RA, Abd El-Wahed MSA. 2020. Effect of exogenous salicylic acid or indole acetic acid on their endogenous levels, germination and growth in maize. Bull Natl Res Cent 44(1):167.
  • Emami S, Alikhani HA, Pourbabaei A, Etesami H, Sarmadian F, Motessharezadeh B. 2019. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environ Sci Pollut Res Int 26(19):19804–19813.
  • Gasparatos D, Haidouti C. 2001. A comparison of wet oxidation methods for determination of total phosphorus in soils. Zeitschrift für Pflanzenernährung Und Bodenkunde 164(4):435–439.
  • Gee G, Bauder J. 1986. Particle-size analysis. In: Klute, A, editor. Methods of Soil Analysis, Part 1. Madison, WI: American Society of Agronomy Inc.
  • George TS, Richardson AE, Hadobas PA, Simpson RJ. 2004. Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27(11):1351–1361.
  • Ghorbani Nasrabadi R, Greiner R, Alikhani HA, Hamedi J. 2012. Identification and determination of extracellular phytate-degrading activity in actinomycetes. World J Microbiol Biotechnol 28(7):2601–2608.
  • Ghorbani Nasrabadi R, Greiner R, Alikhani HA, Hamedi J, Yakhchali B. 2013. Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. Soil Sci Plant Nutr 13(1):223–236.
  • Gómez-Muñoz B, Jensen LS, de Neergaard A, Richardson AE, Magid J. 2018. Effects of Penicillium bilaii on maize growth mediated by available phosphorus. Plant Soil 431(1–2):159–173.
  • Gopalakrishnan S, Humayun P, Vadlamudi S, Vijayabharathi R, Kumari Bhimineni R, Rupela O. 2012. Plant growth-promoting traits of Streptomyces with biocontrol potential isolated from herbal vermicompost. Biocontrol sci Techn 22(10):1199–1210.
  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30(8):1070–1078.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol 26(1):192–195.
  • Greiner R, Konietzny U. 2006. Phytase for food applications. Food Technol Biotechnol 44:125–140.
  • Greiner R, Konietzny U, Jany KD. 1998. Purification and properties of a phytase from rye. J Food Biochemistry 22(2):143–161.
  • Guzmán-Téllez E, Montenegro DD, Benavides-Mendoza A. 2014. Concentration of salicylic acid in tomato leaves after foliar aspesions of this compound. AJPS 05(13):2048–2056.
  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y. 2008. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38(1):12–19.
  • Hanson W. 1950. The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. J Sci Food Agric 1(6):172–173.
  • Harrison AF. 1987. Soil Organic Phosphorus. A Review of World Literature. Oxford: CAB International.
  • Illmer P, Schinner F. 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisnms. Soil Biol Biochem 27(3):257–263.
  • Iniyan AM, Wink J, Landwehr W, Ramprasad EVV, Sasikala C, Ramana CV, Schumann P, Spröer C, Bunk B, Joseph F, et al. 2021. Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India. J Antibiot 74(1):59–69.
  • Jackson ML. 2005. Soil Chemical Analysis: Advanced Course. Madison, WI: UWMadison Libraries Parallel Press.
  • Khamna S, Yokota A, Lumyong S. 2009. Actinomycetes isolated from medicinal plant rhizosphere soil: diversity and screening of antifungal compound, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25(4):649–655.
  • Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120.
  • Kumar V, Singh P, Jorquera M, Sangwan P, Kumar P, Verma AK, Agrawal S. 2013. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29(8):1361–1369.
  • Li Y, Li H, Han X, Han G, Xi J, Liu Y, Zhang Y, Xue Q, Guo Q, Lai H. 2022. Actinobacterial biofertilizer improves the yields of different plants and alters the assembly processes of rhizosphere microbial communities. Appl Soil Ecol 171:104345.
  • Marra LM, de Oliveira-Longatti SM, Soares C, Olivares FL, de Souza- Moreira FM. 2019. The amount of phosphate solubilization depends on the strain, C-source, organic acids and type of phosphate. Geomicrobiol J 36(3):232–242.
  • Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319.
  • McGill WB, Cole CV. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286.
  • McLean E. 1982. Soil pH and lime requirement. Methods Soil Anal 9:199–224.
  • Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, et al. 2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 427(1):5–16.
  • Menezes-Blackburn D, Jorquera MA, Greiner R, Gianfreda L, Mora ML. 2013. Phytases and phytase-labile organic phosphorus in manures and soils. Crit Rev Environ Sci Technol 43(9):916–954.
  • Menezes-Blackburn D, Paredes C, Zhang H, Giles CD, Darch T, Stutter M, George TS, Shand C, Lumsdon D, Cooper P, et al. 2016. Organic acids regulation of chemical-microbial phosphorus transformations in soils. Environ Sci Technol 50(21):11521–11531.
  • Merbach W, Deubel A, Gransee A, Klamroth A. 2010. Phosphorus solubilization in the rhizosphere and its possible importance to determine phosphate plant availability in soil. A review with main emphasis on German results. Arch Agron Soil Sci 56:118–138.
  • Meyer G, Maurhofer M, Frossard E, Gamper H, Mäder P, Mészáros É, Schönholzer-Mauclaire L, Symanczik S, Oberson A. 2019. Pseudomonas protegens XHA0 does not increase phosphorus uptake from 33P labeled synthetic hydroxyapatite by wheat grown on calareous soil. Soil Biol Biochem 131:217–228.
  • Mpanga I, Dapaah H, Geistlinger J, Ludewig U, Neumann G. 2018. Soil type dependent interactions of P-solubilizing microorganisms with organic and inorganic fertilizers mediate plant growth promotion in tomato. Agronomy 8(10):213.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. Methods Soil Anal 5:961–1010.
  • Nozari RM, Ortolan F, Astarita LV, Santarém ER. 2021. Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Braz J Microbiol 52(3):1371–1383.
  • Oliveira C, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH. 2009. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41(9):1782–1787.
  • Olsen SR, Sommers LE. 1982. Phosphorus. In: Page, AL, Miller, RH, Keeney, DR, editors. Methods of Soil Analysis. Part II. Chemical and Microbiological Properties. Madison, WI: ASA SSSA Publisher, p403–427.
  • Pande A, Pandey P, Mehra S, Singh M, Kaushik S. 2017. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15(2):379–391.
  • Pridham T, Anderson P, Foley C, Lindenfelser L, Hasseltine C, Benedict R. 1957. A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu. 1956:947–953.
  • Puente ME, Li CY, Bashan Y. 2009. Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66(3):389–401.
  • Puppala KR, Bhavsar K, Sonalkar V, Khire JM, Dharne MS. 2019. Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatal Agric Biotecnol 18:101020.
  • Raymond NS, Gómez-Muñoz B, van der Bom FJT, Nybroe O, Lars S, Jensen LS, Müller-Stöver DS, Oberson A, Richardson AE. 2021. Phosphate-solubilizing microorganisms for improved crop productivity: a critical assessment. New Phytol 229(3):1268–1277.
  • Rees GL, Pettygrove GS, Southard RJ. 2013. Estimating plant-available potassium in potassium-fixing soils. Commun Soil Sci Plant Anal 44(1-4):741–748.
  • Rfaki A, Zennouhi O, Nassiri L, Ibijbijen J. 2018. Soil properties related to the occurrence of rock phosphate-solubilizing bacteria in the rhizosphere soil of faba bean (Vicia faba L.) in Morocco. Soil Syst 2(2):31.
  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339.
  • Sadeghi A, Karimi E, Abbaszadeh Dahaji P, Ghorbani Javid M, Dalvand Y, Askari A. 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28(4):1503–1509.
  • Sandberg A. 1986. HPLC method for determination of lnositol tri-, tetra-, penta-, and hexaphosphates in foods and intestinal contents. J Food Sci 57:547–550.
  • Selle PH, Ravindran V. 2007. Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135(1–2):1–41.
  • Selle PH, Ravindran V. 2008. Phytate-degrading enzymes in pig nutrition. Livest Sci 113(2–3):99–122.
  • Sharma U, Kumari S, Sinha K, Kumar S. 2017. Isolation and molecular characterization of phytase producing actinobacteria of fruit orchard. Nucleus 60(2):187–195.
  • Shears SB, Turner BL. 2007. Nomenclature and terminology of inositol phosphates: clarification and a glossary of terms. In: Turner, BL, Richardson, AL, Mullaney, EJ, editors. Inositol Phosphates Linking Agriculture and the Environment. Oxford: CAB International, p1–6.
  • Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16(3):313–340.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.
  • Thonar C, Lekfeldt JDS, Cozzolino V, Kundel D, Kulhánek M, Mosimann C, Neumann G, Piccolo A, Rex M, Symanczik S. 2017. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem Biol Technol Agric 4:7.
  • Timlin DJ, Naidu TCM, Fleisher DH, Reddy VR. 2017. Quantitative effects of phosphorus on maize canopy photosynthesis and biomass. Crop Sci 57:3156.
  • Toothaker LE, Newman D. 1994. Nonparametric competitors to the two-way ANOVA. J Stat Educ 19(3):237–273.
  • Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42(2):117–126.
  • Vargha A, Delaney HD. 1998. The Kruskal-Wallis test and stochastic homogeneity. J Educ Behav Stat 23(2):170–192.
  • Vyas P, Gulati A. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174.
  • Wang YY, Li P, Zhang B, Wang Y, Meng J, Gao Y, He X, Hu X. 2020. Identification of phosphate solubilizing microorganisms and determination of their phosphate solubilizing activity and growth promoting capability. BioRes 15(2):2560–2578.
  • Whitelaw MA, Harden TJ, Helyar KR. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31(5):655–665.
  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M. 2018b. Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalyan Region of India. Arch Agron Soil Sci 64(9):1254–1267.
  • Zaidi A, Khan MS, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Imm H 56(3):263–284.
  • Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.