68
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phenol Biodegradation by Free and Immobilized Acinetobacter calcoaceticus K5 and Candida tropicalis YM2 Isolated from Persian Gulf

, , &
Pages 161-171 | Received 05 May 2023, Accepted 11 Dec 2023, Published online: 28 Dec 2023

References

  • Abarian M, Hassanshahian M, Badoei Dalfard A. 2015. Isolation and characterization of phenol degrading bacteria from Midok copper mine at Shahrbabk provenance in Iran. Iran J Environ Technol 1:21–34.
  • Abarian M, Hassanshahian M, Esbah A. 2019. Degradation of phenol at high concentrations using immobilization of Pseudomonas putida P53 into sawdust entrapped in sodium-alginate beads. Water Sci Technol 79(7):1387–1396. https://doi.org/10.2166/wst.2019.134
  • Bhagyashri K, Kalyanrao M, Garadkar A, Kirankumar K, Sharma A, Kamble P, Tayade P, Balu D, Ajalkar A. 2021. Determination of 4-nitrophenol using MoO3 loaded glassy carbon electrode via electrochemical sensing approach. J Electrochem Sci Eng 11(3):143–159.
  • Bankova V, Christoy R, Stoev G, Popov S. 1992. Determination of phenolics from propolis by capillary gas chromatography. J Chromatogr A 607(1):150–153. https://doi.org/10.1016/0021-9673(92)87067-I
  • Banerjee P, Kumar T, Sarangi SC, Meetei UD, Devi AS, Kumar R. 2021. Anti-inflammatory potential of aqueous extract of Elsoltzia stachyodes on experimental models of inflammation in rats. J Nat Sc Biol Med 12(1):103.
  • Bouabidi ZB, El-Naas MH, Zhang Z. 2019. Immobilization of microbial cells for the biotreatment of wastewater: a review. Environ Chem Lett 17(1):241–257. https://doi.org/10.1007/s10311-018-0795-7
  • Chanratana M, Joe MM, Roy Choudhury A, Anandham R, Krishnamoorthy R, Kim K, Jeon S, Choi J, Choi J, Sa T. 2019. Physiological response of tomato plant to chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 inoculation under salinity stress. 3 Biotech 9(11):397. https://doi.org/10.1007/s13205-019-1923-1
  • Elliott M. 2003. Biological pollutants and biological pollution––an increasing cause for concern. Mar Pollut Bull 46(3):275–280. https://doi.org/10.1016/S0025-326X(02)00423-X
  • Faraji H. 2005. β-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J Chromatogr A 1087(1–2):283–288. https://doi.org/10.1016/j.chroma.2005.06.009
  • Filipowicz N, Momotko M, Boczkaj G, Pawlikowski T, Wanarska M, Cieśliński H. 2017. Isolation and characterization of phenol-degrading psychrotolerant yeasts. Water Air Soil Pollut 228(6):1–16.
  • Fingas M. F. 2015. Oil and petroleum evaporation. In Handbook of Oil Spill Science Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, Vol 2, p205–223. https://doi.org/10.1002/9781118989982.ch7
  • Guha Thakurta S, Aakula M, Chakrabarty J, Dutta S. 2018. Bioremediation of phenol from synthetic and real wastewater using Leptolyngbya sp.: a comparison and assessment of lipid production. 3 Biotech 8(4):206. https://doi.org/10.1007/s13205-018-1229-8
  • Hajializadeh A. 2022. Electrochemical sensor based on MWCNTs/Co3O4/SPGE for simultaneous detection of Sudan I and Bisphenol A. J Electrochem Sci Eng 12:185–197.
  • Haripriyan U, Gopinath K, Arun J, Govarthanan M. 2022. Bioremediation of organic pollutants: a mini review on current and critical strategies for wastewater treatment. Arch Microbiol 204(5):286. https://doi.org/10.1007/s00203-022-02907-9
  • Hassanshahian M, Emtiazi G, Cappello S. 2012. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64(1):7–12. https://doi.org/10.1016/j.marpolbul.2011.11.006
  • Hassanshahian M, Karimi M, Emami Z. 2016. Isolation, identification and characterization of two phenol-degrading species of Trichosporon isolated from wastewater of Zarand Coking plant-Kerman. J Water Wastewater 26:76–83.
  • Hsieh F-M, Huang C, Lin T-F, Chen Y-M, Lin J-C. 2008. Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochem 43(1):83–92. https://doi.org/10.1016/j.procbio.2007.10.016
  • Jamshid Eini M, Tavakolipour H, Mousavi Nodoshan R, Mokhtarian M. 2023. Effects of the ultrasound-assisted leaching process on the extraction rate of phenolic compounds, antioxidant activity, and extraction productivity of freeze-dried pomegranate biowaste extract. Iran J Chem Chem Eng. https://doi.org/10.30492/ijcce.2023.1995758.5914
  • Jermsittiparsert K. 2021. Linkage between energy consumption, natural environment pollution, and public health dynamics in Asean. Int J Econ Finan Stud. 13(2):1–21.
  • Kafilzadeh F, Farhangdoost M-S, Tahery Y. 2010. Isolation and identification of phenol degrading bacteria from Lake Parishan and their growth kinetic assay. Afr J Biotechnol. 9:6721–6726.
  • Kan Y, Li J, Zhang S, Gao Z. 2023a. Novel bridge assistance strategy for tailoring crosslinking networks within soybean-meal-based biocomposites to balance mechanical and biodegradation properties. Chem Eng J 472:144858. https://doi.org/10.1016/j.cej.2023.144858
  • Kan Y, Kan H, Bai Y, Zhang S, Gao Z. 2023b. Effective and environmentally safe self-antimildew strategy to simultaneously improve the mildew and water resistances of soybean flour-based adhesives. J Cleaner Prod 392:136319. https://doi.org/10.1016/j.jclepro.2023.136319
  • Kamyab S, Ataei SA, Tabatabaee M, Mirhosaini SA. 2022. Optimizing parameters for bio-hydrogen production from mixed culture and food wastewater. Iran J Chem Chem Eng 42(5):38–48.
  • Köchl S, Niederstätter H, Parson W. 2005. DNA Extraction and Quantitation of Forensic Samples Using the Phenol-Chloroform Method and Real-Time PCR. Methods Mol Biol 297:13–30.
  • Koid A, Nelson WC, Mraz A, Heidelberg KB. 2012. Comparative analysis of eukaryotic marine microbial assemblages from 18S rRNA gene and gene transcript clone libraries by using different methods of extraction. Appl Environ Microbiol 78(11):3958–3965. https://doi.org/10.1128/AEM.06941-11
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
  • Kuzhaeva A, Berlinskii I. 2018. Effects of oil pollution on the environment. International Multidisciplinary Scientific GeoConference: SGEM; Sofia, Vol. 18, Issue. 5.1, p313–319.
  • Lee K-Y, Heo T-R. 2000. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66(2):869–873. https://doi.org/10.1128/AEM.66.2.869-873.2000
  • Li H, Meng F, Duan W, Lin Y, Zheng Y. 2019. Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicol Environ Saf 184:109658. https://doi.org/10.1016/j.ecoenv.2019.109658
  • Liu W, Huang F, Liao Y, Zhang J, Ren G, Zhuang Z, Zhen J, Lin Z, Wang C. 2008. Treatment of CrVI‐containing Mg (OH) 2 nanowaste. Angewandte Chemie 120(30):5701–5704. https://doi.org/10.1002/ange.200800172
  • Loginova N, Gvozdev M, Osipovich N, Khodosovskaya A, Koval’chuk-Rabchinskaya T, Ksendzova G, Kotsikau D, Evtushenkov A. 2022. Silver(I) complexes with phenolic Schiff bases: Synthesis, anti-bacterial evaluation and interaction with biomolecules. Admet Dmpk 10(3):197–212.
  • Mahugo Santana C, Sosa Ferrera Z, Esther Torres Padrón M, Juan Santana Rodríguez J. 2009. Methodologies for the extraction of phenolic compounds from environmental samples: New approaches. Molecules 14(1):298–320. https://doi.org/10.3390/molecules14010298
  • Martínez-Ávila L, Peidro-Guzmán H, Pérez-Llano Y, Moreno-Perlín T, Sánchez-Reyes A, Aranda E, Ángeles de Paz G, Fernández-Silva A, Folch-Mallol JL, Cabana H, et al. 2021. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo [a] pyrene and phenanthrene biodegradation under hypersaline conditions. Environ Pollut 271:116358. https://doi.org/10.1016/j.envpol.2020.116358
  • Martins SCS, Martins CM, Guedes Fiúz LM, Santalla ST. 2013. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. Afr J Biotechnol 12(28):4412–4418.
  • Marlina E, Purwanto P, Sudarno S. 2021. Decolorization of industrial wastewater using electrochemical peroxidation process. J Electrochem Sci Eng 12(2):373–382.
  • Michałowicz J, Duda W. 2007. Phenols–sources and toxicity. Polish J Environ Stud 16(3):347–362.
  • Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T. 2019. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci Total Environ 696:133971. https://doi.org/10.1016/j.scitotenv.2019.133971
  • Nair CI, Jayachandran K, Shashidhar S. 2008. Biodegradation of phenol. Afr J Biotechnol 7(25):4951–4958.
  • Nie S, Mo S, Gao T, Yan B, Shen P, Kashif M, Zhang Z, Li J, Jiang C. 2023. Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. Sci Total Environ 862:160930. https://doi.org/10.1016/j.scitotenv.2022.160930
  • Nayar R, Patel R. 2021. Water quality monitoring and exploring low-cost treatment technology with water hyacinth. EAST 5(1):9–12.
  • Paisio CE, Talano MA, González PS, Pajuelo-Domínguez E, Agostini E. 2013. Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation. Environ Technol 34(1–4):485–493. https://doi.org/10.1080/09593330.2012.701238
  • Poi G, Aburto-Medina A, Mok PC, Ball AS, Shahsavari E. 2017. Bioremediation of phenol-contaminated industrial wastewater using a bacterial consortium—from laboratory to field. Water Air Soil Pollut 228(3):1–12.
  • Ponepal MC, Păunescu A. 2014. Effect of phenol intoxication on some physiological parameters of Perca fluviatilis and Pelophylax ridibundus. Curr Trends Nat Sci 3:82–87.
  • Quintana M, Didion C, Dalton H. 1997. Colorimetric method for a rapid detection of oxygenated aromatic biotransformation products. Biotechnol Techniq 11(8):585–587. https://doi.org/10.1023/A:1018499024466
  • Tan PL, Soo K, Khor YP, Abas F, Tan CP. 2022. Enzyme-assisted water extraction optimization, antioxidant capacity and phenolic profiling of extracts from Garcinia mangostana linn. JFTR 9(2):135–149. https://doi.org/10.18488/jftr.v9i2.3127
  • Shen T, Pi Y, Bao M, Xu N, Li Y, Lu J. 2015. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environ Sci Process Impacts 17(12):2022–2033. https://doi.org/10.1039/C5EM00318K
  • Shen B, Sun S, Zhu L, Yu J, Jiang L. 2023. Intelligent Bio-FeS-loaded chitosan films with H2O2 rapid response for advanced waterproof and antibacterial food packaging. Food Packag Shelf Life 37:101083. https://doi.org/10.1016/j.fpsl.2023.101083
  • Soudi MR, Kolahchi N. 2011. Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1. Prog Biol Sci 1:31–70.
  • Wan D. 2023. Gram-to-kilogram scale-up synthesis of 2, 2’-diallylbisphenol A through microchannel reactor. Iran J Chem Chem Eng 42(5):28–38.
  • Wang Y, Zhai W, Li J, Liu H, Li C, Li J. 2023a. Friction behavior of biodegradable electrospun polyester nanofibrous membranes. Tribol Int 188:108891. https://doi.org/10.1016/j.triboint.2023.108891
  • Wang Y-N, Wang Q, Li Y, Wang H, Gao Y, Sun Y, Wang B, Bian R, Li W, Zhan M. 2023b. Impact of incineration slag co-disposed with municipal solid waste on methane production and methanogens ecology in landfills. Bioresour Technol 377:128978. https://doi.org/10.1016/j.biortech.2023.128978
  • Wang Y, Li C, Shen B, Zhu L, Zhang Y, Jiang L. 2023c. Ultra-small Au/Pt NCs@GOX clusterzyme for enhancing cascade catalytic antibiofilm effect against F. nucleatum-induced periodontitis. Chem Eng J 466:143292. https://doi.org/10.1016/j.cej.2023.143292
  • Xie M, Xu L, Zhang R, Zhou Y, Xiao Y, Su X, Shen C, Sun F, Hashmi MZ, Lin H, et al. 2021. Viable but nonculturable state of yeast Candida sp. strain LN1 induced by high phenol concentrations. Appl Environ Microbiol 87(18):e01110–01121.
  • Zhang G, Zhao Z, Zhu Y. 2020. Changes in abiotic dissipation rates and bound fractions of antibiotics in biochar-amended soil. J Cleaner Prod 256:120314. https://doi.org/10.1016/j.jclepro.2020.120314
  • Zhang G, Zhao Z, Yin X, Zhu Y. 2021. Impacts of biochars on bacterial community shifts and biodegradation of antibiotics in an agricultural soil during short-term incubation. Sci Total Environ 771:144751. https://doi.org/10.1016/j.scitotenv.2020.144751
  • Ziolli RL, Jardim WF. 2002. Operational problems related to the preparation of the seawater soluble fraction of crude oil. J Environ Monit 4(1):138–141. https://doi.org/10.1039/b107281c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.