238
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Variable kinematic shell elements for composite laminates accounting for hygrothermal effects

, , &
Pages 1523-1544 | Received 23 Mar 2017, Accepted 23 Jul 2017, Published online: 24 Aug 2017

References

  • R. B. Pipes, J. R. Vinson, and T. W. Chou, On the Hygrothermal Response of Laminated Composite Systems, J. Compos. Mater., vol. 10, no. 2, pp. 129–148, 1976.
  • G. C. Sih, J. Michopoulos, and S. C. Chou, Hygrothermoelasticity, Springer Science & Business Media, Dordrecht, Netherlands, 2012.
  • C. J. Miller, T. Kicher, and W. Millavec, Thermal Stress Analysis of Layered Cylindrical Shells, AIAA J., vol. 19, no. 4, pp. 523–530, 1981.
  • P. Dumir, J. Nath, P. Kumari, and S. Kapuria, Improved Efficient Zigzag and Third Order Theories for Circular Cylindrical Shells Under Thermal Loading, J. Therm. Stresses, vol. 31, no. 4, pp. 343–367, 2008.
  • Z. Wu and W. Chen, A Global-Local Higher Order Theory for Multilayered Shells and the Analysis of Laminated Cylindrical Shell Panels, Compos. Struct., vol. 84, no. 4, pp. 350–361, 2008.
  • R. K. Khare, T. Kant, and A. K. Garg, Closed-Form Thermo-Mechanical Solutions of Higher-Order Theories of Cross-Ply Laminated Shallow Shells, Compos. Struct., vol. 59, no. 3, pp. 313–340, 2003.
  • A. Khdeir, Thermoelastic Analysis of Cross-Ply Laminated Circular Cylindrical Shells, Int. J. Solids Struct., vol. 33, no. 27, pp. 4007–4017, 1996.
  • A. A. Khdeir, M. D. Rajab, and J. N. Reddy, Thermal Effects on the Response of Cross-Ply Laminated Shallow Shells, Int. J. Solids Struct., vol. 29, no. 5, pp. 653–667, 1992.
  • A. Barut, E. Madenci, and A. Tessler, Nonlinear Thermoelastic Analysis of Composite Panels Under Non-Uniform Temperature Distribution, Int. J. Solids Struct., vol. 37, no. 27, pp. 3681–3713, 2000.
  • V. Tungikar and K. M. Rao, Three Dimensional Exact Solution of Thermal Stresses in Rectangular Composite Laminate, Compos. Struct., vol. 27, no. 4, pp. 419–430, 1994.
  • E. Carrera, Temperature Profile Influence on Layered Plates Response Considering Classical and Advanced Theories, AIAA J., vol. 40, no. 9, pp. 1885–1896, 2002.
  • M. Cinefra, S. Valvano, and E. Carrera, Heat Conduction and Thermal Stress Analysis of Laminated Composites by a Variable Kinematic MITC9 Shell Element, Curved and Layered Structures, vol. 2, no. 1, pp. 301–320, 2015.
  • J. Fourier, Theorie analytique de la chaleur, par M. Fourier, Chez Firmin Didot, Père et Fils, Paris, France, 1822.
  • A. Fick, On Liquid Diffusion, J. Membr. Sci., vol. 100, no. 1, pp. 33–38, 1995.
  • C. H. Shen and G. S. Springer, Moisture Absorption and Desorption of Composite Materials, J. Compos. Mater., vol. 10, no. 1, pp. 2–20, 1976.
  • S. W. Tsai and T. N. Massard, Composites Design, Think Composites, Palmetto, FL, 1988.
  • A. Szekeres and J. Engelbrecht, Coupled Thermal and Moisture Fields with Application to Composites, Period. Polytech. Mech. Eng., vol. 41, no. 2, p. 151, 1997.
  • A. Szekeres, Analogy Between Heat and Moisture: Thermo-Hygro-Mechanical Tailoring of Composites by Taking into Account the Second Sound Phenomenon, Comput. Struct., vol. 76, no. 1, pp. 145–152, 2000.
  • A. Benkeddad, M. Grediac, and A. Vautrin, On the Transient Hygroscopic Stresses in Laminated Composite Plates, Compos. Struct., vol. 30, no. 2, pp. 201–215, 1995.
  • A. Benkeddad, M. Grediac, and A. Vautrin, Computation of Transient Hygroscopic Stresses in Laminated Composite Plates, Compos. Sci. Technol., vol. 56, no. 7, pp. 869–876, 1996.
  • A. Tounsi, M. Bouazza, and E. A. Bedia, Computation of Transient Hygroscopic Stresses in Unidirectional Laminated Composite Plates with Cyclic and Asymmetrical Environmental Conditions, Int. J. Mech. Mater. Design, vol. 1, no. 3, pp. 271–286, 2004.
  • A. Tounsi and E. A. Bedia, Simplified Method for Prediction of Transient Hygroscopic Stresses in Polymer Matrix Composites with Symmetric Environmental Conditions, Appl. Compos. Mater., vol. 10, no. 1, pp. 1–18, 2003.
  • A. Tounsi and E. A. Bedia, Some Observations on the Evolution of Transversal Hygroscopic Stresses in Laminated Composites Plates: Effect of Anisotropy, Compos. Struct., vol. 59, no. 4, pp. 445–454, 2003.
  • A. Tounsi, E. A. Bedia, and A. Benachour, A New Computational Method for Prediction of Transient Hygroscopic Stresses during Moisture Desorption in Laminated Composite Plates with Different Degrees of Anisotropy, J. Thermoplast. Compos. Mater., vol. 18, no. 1, pp. 37–58, 2005.
  • E. A. Bedia, W. Han, and G. Verchery, An Asymptotic Characterisation of the Moisture Diffusion in Polymer Matrix Composites with Cyclic Environmental Conditions, Compos. Struct., vol. 49, no. 3, pp. 269–274, 2000.
  • B. Boukhoulda, E. A. Bedia, and K. Madani, The Effect of Fiber Orientation Angle in Composite Materials on Moisture Absorption and Material Degradation After Hygrothermal Ageing, Compos. Struct., vol. 74, no. 4, pp. 406–418, 2006.
  • F. Jacquemin and A. Vautrin, A Closed-form Solution for the Internal Stresses in Thick Composite Cylinders Induced by Cyclical Environmental Conditions, Compos. Struct., vol. 58, no. 1, pp. 1–9, 2002.
  • B. Patel, M. Ganapathi, and D. Makhecha, Hygrothermal Effects on the Structural Behaviour of Thick Composite Laminates Using Higher-Order Theory, Compos. Struct., vol. 56, no. 1, pp. 25–34, 2002.
  • S. Lo, W. Zhen, Y. Cheung, and C. Wanji, Hygrothermal Effects on Multilayered Composite Plates Using a Refined Higher Order Theory, Composite Structures, vol. 92, no. 3, pp. 633–646, 2010.
  • S. Alsubari, J. M. Ali, and Y. Aminanda, Hygrothermoelastic Analysis of Anisotropic Cylindrical Shells, Compos. Struct., vol. 131, pp. 151–159, 2015.
  • E. Carrera, Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells, Archives of Computational Methods in Engineering, vol. 9, no. 2, pp. 87–140, 2002.
  • E. Carrera, Theories and Finite Elements for Multilayered Plates and Shells: a Unified Compact Formulation With Numerical Assessment and Benchmarking, Archives of Computational Methods in Engineering, vol. 10, no. 3, pp. 215–296, 2003.
  • E. Carrera, M. Cinefra, and F. A. Fazzolari, Some Results on Thermal Stress of Layered Plates and Shells by Using Unified Formulation, J. Therm. Stresses, vol. 36, no. 6, pp. 589–625, 2013.
  • M. Cinefra, E. Carrera, S. Brischetto, and S. Belouettar, Thermo-Mechanical Analysis of Functionally Graded Shells, J. Therm. Stresses, vol. 33, no. 10, pp. 942–963, 2010.
  • M. Cinefra, S. Valvano, and E. Carrera, Thermal Stress Analysis of Laminated Structures by a Variable Kinematic MITC9 Shell Element, J. Therm. Stresses, vol. 39, no. 2, pp. 121–141, 2016.
  • E. Carrera, F. Fazzolari, and M. Cinefra, Thermal Stress Analysis of Composite Beams, Plates and Shells, Elsevier, Amsterdam, Netherlands, 2015.
  • K. J. Bathe, P. S. Lee, and J. F. Hiller, Towards Improving the MITC9 Shell Element, Comput. Struct., vol. 81, no. 8, pp. 477–489, 2003.
  • C. Chinosi and L. Della, Croce, Mixed-Interpolated Elements for Thin Shells, Commun. Numer. Meth. Eng., vol. 14, no. 12, pp. 1155–1170, 1998.
  • H. C. Huang, Membrane Locking and Assumed Strain Shell Elements, Comput. Struct., vol. 27, no. 5, pp. 671–677, 1987.
  • P. Panasz and K. Wisniewski, Nine-Node Shell Elements with 6 Dofs/Node Based on Two-Level Approximations. Part I: Theory and Linear Tests, Finite Elem. Anal. Design, vol. 44, no. 12, pp. 784–796, 2008.
  • E. Carrera, M. Cinefra, G. Li, and G. Kulikov, MITC9 Shell Finite Elements with Miscellaneous Through-the-Thickness Functions for the Analysis of Laminated Structures, Compos. Struct., vol. 154, pp. 360–373, 2016.
  • A. W. Leissa, Vibration of Shells, Technical Report, NASA, Washington, 1973.
  • R. M. Jones, Buckling of Bars, Plates, and Shells, Bull Ridge Corporation, Washington, 2006.
  • J. Reddy, Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, 2nd ed., CRC Press, Boca Raton, FL, 2004.
  • P. M. Naghdi, The Theory of Plates and Shells, Handbuch der Physik, vol. VI a/2, pp. 425–640, Springer, Berlin, Germany, 1972.
  • W. Koiter, On the Foundations of the Linear Theory of Thin Elastic Shell, Proc. Kon. Ned. Akad. Wet., vol. 73, no. 3, pp. 169–195, 1970.
  • P. G. Ciarlet and L. Gratie, Another Approach to Linear Shell Theory and a New Proof of Korn’s Inequality on a Surface, Compt. Rendus Math., vol. 340, no. 6, pp. 471–478, 2005.
  • H. Murakami, Laminated Composite Plate Theory with Improved In-Plane Responses, J. Appl. Mech., vol. 53, no. 3, pp. 661–666, 1986.
  • I. Babuska, B. A. Szabo, and I. N. Katz, The p-version of the Finite Element Method, SIAM J. Numer. Anal., vol. 18, no. 3, pp. 515–545, 1981.
  • A. Pagani and A. de, Miguel, M. Petrolo, and E. Carrera, Analysis of Laminated Beams via Unified Formulation and Legendre Polynomial Expansions, Compos. Struct., vol. 156, pp. 78–92, 2016.
  • L. Demasi, Mixed plate theories based on the Generalized Unified Formulation: Part II: Layerwise Theories, Compos. Struct., vol. 87, no. 1, pp. 12–22, 2009.
  • E. Carrera and G. Giunta, Hierarchical Evaluation of Failure Parameters in Composite Plates, AIAA J., vol. 47, no. 3, pp. 692–702, 2009.
  • G. Kulikov and S. Plotnikova, Exact 3D Stress Analysis of Laminated Composite Plates by Sampling Surfaces Method, Compos. Struct., vol. 94, no. 12, pp. 3654–3663, 2012.
  • G. Kulikov and S. Plotnikova, Advanced Formulation for Laminated Composite Shells: 3D Stress Analysis and Rigid-Body Motions, Compos. Struct., vol. 95, pp. 236–246, 2013.
  • G. Kulikov and S. Plotnikova, Hybrid-Mixed and Finite Elements for Stress Analysis of Laminated Composite Structures: Sampling Surfaces Plate Formulation, Computer Methods in Applied Mechanics and Engineering, vol. 303, pp. 374–399, 2016.
  • M. Cinefra and S. Valvano, A Variable Kinematic Doubly-Curved MITC9 Shell Element for the Analysis of Laminated Composites, Mech. Adv. Mater. Struct., vol. 23, no. 11, pp. 1312–1325, 2016.
  • M. Cinefra, E. Carrera, and L. Della, Croce, and C. Chinosi, Refined Shell Elements for the Analysis of Functionally Graded Structures, Compos. Struct., vol. 94, pp. 415–422, 2012.
  • M. Cinefra, C. Chinosi, and L. Della, Croce, Mitc9 Shell Elements Based on Refined Theories for the Analysis of Isotropic Cylindrical Structures, Mech. Adv. Mater. Struct., vol. 20, pp. 91–100, 2013.
  • M. Cinefra and E. Carrera, Shell Finite Elements with Different Through-the-thickness Kinematics for the Linear Analysis of Cylindrical Multilayered Structures, Int. J. Numer. Meth. Eng., vol. 93, pp. 160–182, 2013.
  • M. Cinefra, Free-Vibration Analysis of Laminated Shells via Refined mitc9 Elements, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 937–947, 2016.
  • M. T. Hicks, Design of a Carbon Fiber Composite Grid Structure for the Glast Spacecraft Using a Novel Manufacturing Technique, Technical Report, SLAC, 2001.
  • E. Carrera, M. Cinefra, M. Petrolo, and A. Lamberti, Best Theory Diagrams for Multilayered Plates Considering Multifield Analysis, J. Intel. Mater. Syst. Struct. (in press). doi: 10.1177/1045389X16679018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.