557
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Thermal buckling analysis of functionally graded sandwich plates

ORCID Icon &
Pages 139-159 | Received 19 Apr 2017, Accepted 13 Oct 2017, Published online: 09 Nov 2017

References

  • Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford, Functionally Graded Materials: Design, Processing and Applications. Boston: Kluwer Academic, 1999.
  • M. Finot, S. Suresh, C. Bull, and S. Sampath, “Curvature changes during thermal cycling of a compositionally graded Ni/A12O3 multi-layered material,” Mat. Sci. Eng. A–Struct., vol. 205, pp. 59–71, 1996.
  • R. Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates,” AIAA. J., vol. 40, pp. 162–169, 2002.
  • Y. Kiani, E. Bagherizadeh, and M. R. Eslami, “Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions),” Z. Angew. Math. Mech., vol. 91, no. 7, pp. 581–593, 2011.
  • R. Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates based on higher order theory,” J. Therm. Stresses, vol. 25, pp. 603–625, 2002.
  • B. Shariat and M. R. Eslami, “Thermal buckling of imperfect functionally graded plates,” Int. J. Solids. Struct., vol. 43, pp. 4082–4096, 2006.
  • X. Zhao, Y. Y. Lee, and K. M. Liew, “Mechanical and thermal buckling analysis of functionally graded plates,” Compos. Struct., vol. 90, pp. 161–171, 2009.
  • M. Ganapathi and T. Prakash, “Thermal buckling of simply supported functionally graded skew plates,” Compos. Struct., vol. 74, pp. 247–250, 2006.
  • W. Lanhe, “Thermal buckling of a simply supported moderately thick rectangular FGM plate,” Compos. Struct., vol. 64, pp. 211–218, 2004.
  • M. Bouazza, A. Tounsi, E. A. Adda-Bedia, and A. Megueni, “Thermoelastic stability analysis of functionally graded plates: An analytical approach,” Comp. Mater. Sci., vol. 49, pp. 865–870, 2010.
  • M. Bouazza, A. Tounsi, and A. Megueni, “Buckling analysis of functionally graded plates with simply supported edges,” Leonardo. J. Sci., vol. 15, pp. 21–32, 2009.
  • H. A. Atmane, E. A. Adda-Bedia, M. Bouazza, A. Tounsi, and A. Fekrar, “On the thermal buckling of simply supported rectangular plates made of a sigmoid functionally graded Al/Al2O3 based material,” Mech. Solids., vol. 51, pp. 177–187, 2016.
  • H. Yaghoobi and M. Torabi, “Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions,” J. Therm. Stresses, vol. 36, pp. 869–894, 2013.
  • A. M. Zenkour and M. Sobhy, “Thermal buckling of various types of FGM sandwich plates,” Compos. Struct., vol. 93, pp. 93–102, 2010.
  • A. M. Zenkour and M. Shoby, “Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory,” J. Therm. Stresses, vol. 34, pp. 1119–1138, 2011.
  • H. Matsunaga, “Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory,” Compos. Struct., vol. 90, pp. 76–86, 2009.
  • A. M. Zenkour and D. S. Mashat, “Thermal buckling analysis of ceramic-metal functionally graded plates,” Nat. Sci., vol. 2, pp. 968–978, 2010.
  • M. Bodaghi and A. R. Saidi, “Thermoelastic buckling behavior of thick functionally graded rectangular plates,” Arch. Appl. Mech., vol. 81, pp. 1555–1572, 2011.
  • P. Malekzadeh, “Three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method,” Compos. Struct., vol. 93, pp. 246–1254, 2011.
  • R. B. Bouiadjra and E. A. Adda, Bedia, and A. Tounsi, “Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory,” Struct. Eng. Mech., vol. 48, pp. 547–567, 2013.
  • Y. Khalfi, M. S. A. Houari, and A. Tounsi, “A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation,” Int. J. Comput. Methods, vol. 11, no. 5, p. 1350077, 2014.
  • H. Yaghoobi and A. Fereidoon, “Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory,” Compos. Part. B., vol. 62, pp. 54–64, 2014.
  • Z. Abdelhak, L. Hadjil, T. H. Daouadj, and E. A. Bedia, “Thermal buckling of functionally graded plates using a n-order four variable refined theory,” Adv. Mat. Res., vol. 4, no. 1, pp. 31–44, 2015.
  • A. Bouhadra, S. Benyoucef, A. Tounsi, R. B. Bouiadjra, and M. S. S. A. Houari, “Thermal buckling response of functionally graded plates with clamped boundary conditions,” J. Therm. Stresses, vol. 38, pp. 630–650, 2015.
  • A. A. Bousahla, S. Benyoucef, A. Tounsi, and S. R. Mahmoud, “On thermal stability of plates with functionally graded coefficient of thermal expansion,” Struct. Eng. Mech., vol. 60, no. 2, pp. 313–335, 2016.
  • W. Tebboune, K. H. Benrahou, M. S. A. Houari, and A. Tounsi, “Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory,” Steel Compos. Struct., vol. 18, no. 2, pp. 443–465, 2015.
  • M. Bourada, A. Tounsi, and M. S. A. Houari, “A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates,” J. Sandw. Struct. Mater., vol. 14, pp. 5–33, 2012.
  • B. Bouderba, M. S. A. Houari, A. Tounsi, and S. R. Mahmoud, “Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,” Struct. Eng. Mech., vol. 58, no. 3, pp. 397–422, 2016.
  • F. Z. Kettaf, M. S. A. Houari, M. Benguediab, and A. Tounsi, “Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model,” Steel Compos. Struct., vol. 15, pp. 399–423, 2013.
  • F. A. Fazzolari and E. Carrera, “Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions,” J. Therm. Stresses, vol. 37, pp. 1449–1481, 2014.
  • K. S. Na and J. H. Kim, “Three-dimensional thermal buckling analysis of functionally graded materials,” Compos. Part B., vol. 35, pp. 429–437, 2004.
  • T. Prakash and M. Ganapathi, “Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method,” Compos. Part. B., vol. 37, pp. 642–649, 2006.
  • X. Zhao and K. M. Liew, “A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels,” Comput. Mech., vol. 45, pp. 297–310, 2010.
  • H. Nguyen-Xuan, L. V. Tran, C. H. Thai, and T. Nguyen-Thoi, “Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing,” Thin-Wall. Struct., vol. 54, pp. 1–18, 2012.
  • L. V. Tran, C. H. Thai, and H. Nguyen-Xuan, “An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates,” Finite Elem. Anal. Des., vol. 73, pp. 65–76, 2013.
  • S. Natarajan, A. J. M. Ferreira, S. Bordas, E. Carrera, M. Cinefra, and A. M. Zenkour, “Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method,” Math. Prob. Eng., vol. 2014, no. 247932, pp. 1–13, 2014.
  • V. R. Kar, S. K. Panda, and T. R. Mahapatra, “Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties,” Adv. Mat. Res., vol. 5, no. 4, pp. 205–221, 2016.
  • A. M. Zenkour and M. Sobhy, “Dynamic bending response of thermoelastic functionally graded plates resting on elastic foundations,” Aerosp. Sci. Technol., vol. 29, pp. 7–17, 2013.
  • M. Sobhy and A. M. Zenkour, “Thermodynamical bending of FGM sandwich plates resting on Pasternak’s elastic foundations,” Adv. Appl. Math. Mech., vol. 7, pp. 116–134, 2014.
  • A. M. Zenkour and N. A. Alghamdi, “Thermoelastic bending analysis of functionally graded sandwich plates,” J. Mater. Sci., vol. 43, no. 8, pp. 2574–2589, 2008.
  • A. M. Zenkour, “The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates,” Int. J. Appl. Mech., vol. 1, no. 4, pp. 667–707, 2009.
  • A. M. Zenkour and N. A. Alghamdi, “Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads,” Mech. Adv. Mat. Struct., vol. 17, pp. 419–432, 2010.
  • A. M. Zenkour and N. A. Alghamdi, “Thermomechanical bending response of functionally graded nonsymmetric sandwich plates,” J. Sandw. Struct. Mater., vol. 12, pp. 7–46, 2010.
  • M. S. A. Houari, S. Benyoucef, I. Mechab, A. Tounsi, and E. A. Adda, Bedia, “Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates,” J. Therm. Stresses, vol. 34, pp. 315–334, 2011.
  • A. Tounsi, M. S. A. Houari, B. Amir, and E. A. Adda, Bedia, “A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates,” Aerosp. Sci Technol., vol. 24, pp. 209–220, 2013.
  • F. Z. Taibi, S. Benyoucef, A. Tounsi, R. B. Bouiadjra, and E. A. Adda, Bedia, and S. R. Mahmoud, “A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations,” J. Sandw. Struct. Mater., vol. 17, no. 2, pp. 99–129, 2015.
  • J. L. Mantari and E. V. Granados, “Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns,” Compos. Part. B., vol. 69, pp. 317–334, 2015.
  • Y. Beldjelili, A. Tounsi, and S. R. Mahmoud, “Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory,” Smart. Struct. Syst., vol. 18, no. 4, pp. 755–786, 2016.
  • D. Li, Z. Deng, G. Chen, H. Xiao, and L. Zhu, “Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core,” Compos. Struct., vol. 169, pp. 29–41, 2017.
  • M. S. A. Houari, A. Tounsi, and O. A. Bég, “Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory,” Int. J. Mech. Sci., vol. 76, no. 6, pp. 102–111, 2013.
  • J. N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech., vol. 51, pp. 745–752, 1984.
  • J. Lei, Y. He, S. Guo, Z. Li, and D. Liu, “Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM,” J. Therm. Stresses, vol. 40, pp. 665–689, 2016.
  • R. B. Hetnarski and M. R. Eslami, Thermal Stresses: Advanced Theory and Applications. New York: Springer, 2008.
  • J. J. Skrzypek, A. W. Ganczarski, F. Rustichelli, and H. Egner, Advanced Materials and Structures for Extreme Operating Conditions. New York: Springer, 2008.
  • J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Therm. Stresses, vol. 21, pp. 593–626, 1998.
  • B. Mirzavand and M. R. Eslami, “A closed-form solution for thermal buckling of piezoelectric FGM hybrid cylindrical shells with temperature dependent properties,” Mech. Adv. Mater. Struct, vol. 18, pp. 185–193, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.