107
Views
1
CrossRef citations to date
0
Altmetric
Articles

Quasi-static analysis of microvoid growth in elastic-viscoplastic materials under thermal shock

&
Pages 1136-1152 | Received 10 Jan 2018, Accepted 16 Apr 2018, Published online: 09 Aug 2018

References

  • R. W. Cahn, P. Haasen, and E. J. Kramer, “Plastic Deformation and Fracture of Materials,” in Materials Science and Technology, vol. 6, Hael Mughrabi, Ed. New York, NY, USA: VCH, 1993, p. 568–633.
  • Q. Feng, G. J. Ton, and Y. Zheng, “Service induced degradation and rejuvenation of gas turbine blades,” Mater. China., vol. 31, no. 12, pp. 21–34, 2012.
  • J. W. Sanders, M. Dadfarnia, J. F. Stubbins, and P. Sofronisac, “On the fracture of high temperature alloys by creep cavitation under uniaxial or biaxial stress states,” J. Mech. Phys. Solids., vol. 98, pp. 49–62, Jan. 2017. DOI: 10.1016/j.jmps.2016.05.019.
  • X. C. Shang and Z. B. Zhang, “Characterization of microscopic damage in aluminum alloy materials under intense thermal shock,” J. Mater. Eng., vol. 35, no. 2, pp. 1–4, 2011.
  • R. F. Bishop, R. Hill, and N. F. Mott, “The theory of indentation and hardness tests,” Proc. Phys. Soc., vol. 57, no. 3, pp. 147–159, May. 1945. DOI: 10.1088/0959-5309/57/3/301.
  • R. Hill, The Mathematical Theory of Plasticity, Oxford: Clarendon Press, 1950, p. 103–106.
  • F. A. McClintock, “A criterion for ductile fracture by the growth of holes,” J. Appl. Mech, vol. 35, no. 2, pp. 363–371, Jun. 1968. DOI: 10.1115/1.3601204.
  • J. R. Rice and D. M. Tracey, “On the ductile enlargement of voids in triaxial stress fields,” J. Mech. Phys. Solids., vol. 17, no. 3, pp. 201–217, Jun. 1969. DOI: 10.1016/0022-5096(69)90033-7.
  • A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Technol., vol. 99, no. 1, pp. 2–15, Jan. 1977. DOI:10.1115/1.3443401.
  • V. Tvergaard, “Material failure by void growth to coalescence,” Adv. Appl. Mech., vol. 27, pp. 83–151, Jan. 1990. DOI:10.1016/S0065-2156(08)70195-9.
  • Y. Huang, J. W. Hutchinson, and V. Tvergaard, “Cavitation instabilities in elastic-plastic solids,” J. Mech. Phys. Solids., vol. 39, no. 2, pp. 223–241, Jan. 1991. DOI: 10.1016/0022-5096(91)90004-8.
  • H. S. Yu, Cavity Expansion Methods in Geomechanics, Chap. 3, Norwell, MA, USA: Kluwer Academic Publishers, 2000, p. 50–84.
  • H. G. Hopkins, “Progress in sold mechanics,” in Dynamic Expansion of Spherical Cavity in Metals, vol. 1, I. N. Sneddon and R. Hill, Eds. Amsterdam: North-Holland, 1960.
  • D. Durban and N. A. Fleck, “Spherical cavity expansion in a Drucker-Prager solid,” J. Appl. Mech., vol. 64, no. 4, pp. 743–750, Dec. 1997. DOI: 10.1115/1.2788978.
  • D. Durban and R. Masri, “Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium,” Int. J. Solids Struct., vol. 41, no. 20, pp. 5697–5716, Oct. 2004. DOI: 10.1016/j.ijsolstr.2004.03.009.
  • S. C. Hunter and R. J. M. Crozier, “Similarity solution for the rapid uniform expansion of a spherical cavity in a compressible elastic-plastic solid,” Quarter. J. Mech. Appl. Math., vol. 21, no. 4, pp. 467–486, Nov. 1968. DOI: 10.1093/qjmam/21.4.467.
  • M. J. Forrestal and V. K. Luk, “Dynamic spherical cavity-expansion in a compressible elastic-plastic solid,” J. Appl. Mech., vol. 55, no. 2, pp. 275–279, Jun. 1988. DOI: 10.1115/1.3173672.
  • M. J. Forrestal and D. Y. Tzou, “A spherical cavity-expansion penetration model for concrete targets,” Int. L Solids Struct., vol. 34, no. 31–32, pp. 4127–4146, Nov. 1997. DOI: 10.1016/S0020-7683(97)00017-6.
  • V. K. Luk, M. J. Forrestal, and D. E. Amos, “Dynamic spherical cavity expansion of strain-hardening materials,” J. Appl. Mech., vol. 58, no. 1, pp. 1–6, Mar. 1991. DOI: 10.1115/1.2897150.
  • M. Ortiz and A. Molinari, “Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material,” J. Appl. Mech, vol. 59, no. 1, pp. 48–53, Mar. 1992. DOI: 10.1115/1.2899463.
  • Y. Zhang and Z. P. Huang, “Void growth and cavitation in nonlinear viscoelastic solids,” Acta. Mech. Sin., vol. 19, no. 4, pp. 380–384, Aug. 2003. DOI: 10.1007/BF02487816.
  • T. Cohen and A. Molinari, “Dynamic cavitation and relaxation in incompressible nonlinear viscoelastic solids,” Int. J. Solids Struct., vol. 69–70, pp. 544–552, Sep. 2015. DOI: 10.1016/j.ijsolstr.2015.04.029.
  • Y. Tanigawa and M. Kosako, “Transient thermal stress analysis of an infinite medium with a spherical cavity due to a nonuniform heat supply,” Int. J. Eng. Sci., vol. 24, no. 3, pp. 309–321, Dec. 1986. DOI: 10.1016/0020-7225(86)90088-1.
  • T. Hata, “Thermal shock in a hollow sphere caused by rapid uniform heating,” J. Appl. Mech, vol. 58, no. 1, pp. 64–69, Mar. 1991. DOI: 10.1115/1.2897180.
  • H. H. Sherief and F. A. Megahed, “Two-dimensional problems for thermoelasticity with two relaxation times in spherical regions under axisymmetric distributions,” Int. J. Eng. Sci, vol. 37, no. 3, pp. 299–314, Feb. 1999. DOI: 10.1016/S0020-7225(98)00070-6.
  • F. L. Huang and Z. P. Wang, “Modelling fracture process in a ductile solid under intense impulsive loading using a model of the void growth with temperature-dependency,” Eng. Fract. Mech., vol. 55, no. 4, pp. 657–674, Nov. 1996. DOI: 10.1016/0013-7944(95)00252-9.
  • X. C. Shang, R. Zhang, and H. L. Ren, “Analysis of cavitation problem of heated elastic composite ball,” Appl. Math. Mech. Engl. Ed., vol. 32, no. 5, pp. 587–594, May. 2011. DOI: 10.1007/s10483-011-1440-9.
  • X. Y. Shi and X. C. Shang, “Growth of a spherical micro-void in an infinite elastoplastic body under thermal load,” Acta Mech., vol. 225, no. 11, pp. 3237–3245, Nov. 2014. DOI: 10.1007/s00707-013-1030-z.
  • Y. J. Chen and X. C. Shang, “Research on the thermal cavitation problem of a preexisting microvoid in a viscoelastic sphere,” Math. Probl. Eng., vol. 2013, no. 8, pp. 1–226, Oct. 2013. DOI: 10.1155/2013/456375.
  • M. Baghani, A. H. Eskandari, and M. R. Zakerzadeh, “Transient growth of a micro-void in an infinite medium under thermal load with modified Zerilli-Armstrong model,” Acta Mech., vol. 227, no. 4, pp. 943–911, Apr. 2016. DOI: 10.1007/s00707-015-1490-4.
  • P. Perzyna, “The study of the dynamic behavior of rate sensitive plastic materials,” Arch. Mech. Stos., vol. 15, no. 15, pp. 113–130, 1963.
  • A. M. Freudenthal, Handbuch der Physik, vol. VI, Berlin-Gottingen-Heidelberg: Springer Verlag, 1958.
  • T. Wierzbicki, “Impulsive loading of a spherical container with rigid-plastic and strain rate sensitive material,” Arch. Mech. Stos., vol. 15, pp. 775–790, 1963.
  • H. Takuda, K. Mori, I. Masuda, Y. Abe, and M. Matsuo, “Finite element simulation of warm deep drawing of aluminum alloy sheet when accounting for heat conduction,” J. Mater. Process. Technol., vol. 120, no. 1–3, pp. 412–418, Jan. 2002. DOI: 10.1016/S0924-0136(01)01180-3.
  • J. Zheng and Z. P. Wang, “Dynamic damage and failure in visco-plastic materials,” Eng. Fract. Mech., vol. 52, no. 6, pp. 1065–1077, Dec. 1995. DOI: 10.1016/0013-7944(95)00061-Y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.