397
Views
43
CrossRef citations to date
0
Altmetric
Articles

Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction

, ORCID Icon, , &
Pages 1182-1200 | Received 06 Feb 2018, Accepted 16 Apr 2018, Published online: 24 Jul 2018

References

  • S. Schmid et al., “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys., vol. 115, pp. 054513, Feb. 2014. DOI: https://doi.org/10.1063/1.4862296.
  • R. Kou et al., “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett., vol. 104, pp. 091122, Mar. 2014. DOI: 10.1063/1.4867472.
  • C. Chen et al., “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol., vol. 4, pp. 861–867, Sep. 2009. DOI: 10.1038/nnano.2009.267.
  • Q. Li et al., “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale, vol. 8, pp. 17278–17217 284, Mar. 2016. DOI: 10.1039/C6NR01911K.
  • K. Ekinci, Y. Yang, and M. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys., vol. 95, pp. 2682–2689, Nov. 2004. DOI: 10.1063/1.1642738.
  • A. Cleland and M. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys., vol. 92, pp. 2758–2769, Aug. 2002. DOI: 10.1063/1.1499745.
  • A. Kiselev and G. Iafrate, “Phonon dynamics and phonon assisted losses in Euler-Bernoulli nanobeams,” Phys. Rev. B, vol. 77, pp. 205436, May. 2008. DOI: 10.1103/PhysRevB.77.205436.
  • J. Zhang, X. Huang, Y. Yue, J. Wang, and X. Wang, “Dynamic response of graphene to thermal impulse,” Phys. Rev. B, vol. 84, pp. 362–369, Dec. 2011. DOI: 10.1103/PhysRevB.84.235416.
  • D. Akinwande, et al., “A review on mechanics and mechanical properties of 2d materialsgraphene and beyond,” Extreme Mech. Lett., vol. 13, pp. 42–77, May. 2017. DOI: 10.1016/j.eml.2017.01.008.
  • F. Yang, A. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, pp. 2731–2743, May. 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • E. C. Aifantis, “Strain gradient interpretation of size effects,” Int. J. Fract., vol. 95, pp. 299–314, Jan. 1999. DOI: 10.1023/A:1018625006804.
  • A. C. Eringen, “Theory of micropolar plates,” Z. Angew. Math. Phys., vol. 18, pp. 12–30, Jan. 1967. DOI: 10.1007/BF01593891.
  • A. C. Eringen, “Nonlocal polar elastic continua,” Int. J. Eng. Sci., vol. 10, pp. 1–16, Jan. 1972. DOI: 10.1016/0020-7225(72)90070-5.
  • X. Zhu and L. Li, “Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity,” Int. J. Mech. Sci., vol. 133, pp. 639–650, Nov. 2017. DOI: 10.1016/j.ijmecsci.2017.09.030.
  • L. Li and Y. Hu, “Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory,” Compos. Struct., vol. 172, pp. 242–250, Jul. 2017. DOI: 10.1016/j.compstruct.2017.03.097.
  • J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams,” Int. J. Eng. Sci., vol. 45, pp. 288–307, Feb–Aug. 2007. DOI: 10.1016/j.ijengsci.2007.04.004.
  • H. Askes and E. C. Aifantis, “Gradient elasticity and flexural wave dispersion in carbon nanotubes,” Phys. Rev. B., vol. 80, pp. 195412, Nov. 2009. DOI: 10.1103/PhysRevB.80.195412.
  • L. Li, Y. Hu, and L. Ling, “Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory,” Compos. Struct., vol. 133, pp. 1079–1092, Dec. 2015. DOI: 10.1016/j.compstruct.2015.08.014.
  • F. Ebrahimi, M. R. Barati, and A. Dabbagh, “A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates,” Int. J. Eng. Sci., vol. 107, pp. 169–182, Oct. 2016. DOI: 10.1016/j.ijengsci.2016.07.008.
  • M. Gurtin, J. Weissmüller, and F. Larche, “A general theory of curved deformable interfaces in solids at equilibrium,” Philos. Mag. A, vol. 78, pp. 1093–1109, Feb. 1998. DOI: 10.1080/01418619808239977.
  • C. W. Lim, G. Zhang, and J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids., vol. 78, pp. 298–313, May. 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • L. Li and Y. Hu, “Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory,” Int. J. Eng. Sci., vol. 97, pp. 84–94, Dec. 2015. DOI: 10.1016/j.ijengsci.2015.08.013.
  • M. R. Barati and A. Zenkour, “A general bi-helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate,” Compos. Struct., vol. 168, pp. 885–892, May. 2017. DOI: 10.1016/j.compstruct.2017.02.090.
  • F. Ebrahimi and M. R. Barati, “Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory,” Smart Mater. Struct., vol. 26, pp. 065018, May. 2017. DOI: 10.1088/1361-665X/aa6eec.
  • H. B. Khaniki, “On vibrations of nanobeam systems,” Int. J. Eng. Sci., vol. 124, pp. 85–103, Mar. 2018. DOI: 10.1016/j.ijengsci.2017.12.010.
  • J. Wang, H. Shen, B. Zhang, J. Liu, and Y. Zhang, “Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory,” Phys. E Low-Dimen. Syst. Nanostruct., vol. 101, pp. 85–93, Jul. 2018. DOI: 10.1016/j.physe.2018.03.017.
  • M. R. Barati and H. Shahverdi, “Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory,” Compos. Struct., vol. 176, pp. 982–995, Sep. 2017. DOI: 10.1016/j.compstruct.2017.06.004.
  • H. B. Khaniki and S. Hosseini-Hashemi, “Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method,” Eur. Phys. J. Plus., vol. 132, pp. 500, Nov. 2017. DOI: 10.1140/epjp/i2017-11757-4.
  • S. Faghidian, “Reissner stationary variational principle for nonlocal strain gradient theory of elasticity,” Eur. J. Mech. Solids., vol. 70, pp. 115–126, Jul–Aug. 2018. DOI: 10.1016/j.euromechsol.2018.02.009.
  • K. Rajabi, L. Li, S. Hosseini-Hashemi, and A. Nezamabadi, “Size-dependent nonlinear vibration analysis of Euler–Bernoulli nanobeams acted upon by moving loads with variable speeds,” Mater. Res. Express., vol. 5, pp. 015058, Jan. 2018. DOI: 10.1088/2053-1591/aaa6e9.
  • A. Hadi, M. Nejad, and M. Hosseini, “Vibrations of three-dimensionally graded nanobeams,” Int. J. Eng. Sci., vol. 128, pp. 12–23, Jul. 2018. DOI: 10.1016/j.ijengsci.2018.03.004.
  • F. Ebrahimi and M. R. Barati, “Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory,” Mech. Adv. Mater. Struct., vol. 25, no. 4, pp. 350–359, Oct. 2018. DOI: 10.1080/15376494.2016.1255830.
  • B. Karami, D. Shahsavari, and L. Li, “Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory,” Phys. E Low-Dimens. Syst. Nanostruct., vol. 97, pp. 317–327, Mar. 2018. DOI: 10.1016/j.physe.2017.11.020.
  • F. Ebrahimi, M. R. Barati, and P. Haghi, “Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams,” J. Ther. Stresses., vol. 40, pp. 535–547, Nov. 2017. DOI: 10.1080/01495739.2016.1230483.
  • B. Karami, D. Shahsavari, M. Janghorban, and L. Li, “Wave dispersion of mounted graphene with initial stress,” Thin-Wall. Struct., vol. 122, pp. 102–111, Jan. 2018. DOI: 10.1016/j.tws.2017.10.004.
  • L. Li, Y. Hu, and L. Ling, “Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory,” Phys. E Low-Dimens. Syst. Nanostruct., vol. 75, pp. 118–124, Jan. 2016. DOI: 10.1016/j.physe.2015.09.028.
  • F. Ebrahimi and M. R. Barati, “A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams,” Compos. Struct., vol. 159, pp. 174–182, Jan. 2017. DOI: 10.1016/j.compstruct.2016.09.058.
  • L. Li and Y. Hu, “Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory,” Comput. Mater. Sci., vol. 112, pp. 282–288, Feb. 2016. DOI: 10.1016/j.commatsci.2015.10.044.
  • M. R. Barati, “On wave propagation in nanoporous materials,” Int. J. Eng. Sci., vol. 116, pp. 1–11, 2017. DOI: 10.1016/j.ijengsci.2017.03.007.
  • K. Mohammadi, A. Rajabpour, and M. Ghadiri, “Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation,” Comput. Mater. Sci., vol. 148, pp. 104–115, 2018. DOI: 10.1016/j.commatsci.2018.02.036.
  • F. Ebrahimi and M. R. Barati, “Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory,” Compos. Struct., vol. 159, pp. 433–444, Jan. 2017. DOI: 10.1016/j.compstruct.2016.09.092.
  • F. Ebrahimi and M. R. Barati, “Wave propagation analysis of quasi-3d FG nanobeams in thermal environment based on nonlocal strain gradient theory,” Appl. Phys. A, vol. 122, pp. 843, Sep. 2016. DOI: 10.1007/s00339-016-0368-1.
  • F. Ebrahimi and M. R. Barati, “Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects,” Acta Mech., vol. 228, no. 3, pp. 1197–1210, Mar. 2017. DOI: 10.1007/s00707-016-1755-6.
  • L. Li, H. Tang, and Y. Hu, “The effect of thickness on the mechanics of nanobeams,” Int. J. Eng. Sci., vol. 123, pp. 81–91, Feb. 2018. DOI: 10.1016/j.ijengsci.2017.11.021.
  • R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B., vol. 61, pp. 5600–5609, Feb. 2000. DOI: 10.1103/PhysRevB.61.5600.
  • G. Rezazadeh, A. S. Vahdat, S. Tayefeh-Rezaei, and C. Cetinkaya, “Thermoelastic damping in a micro-beam resonator using modified couple stress theory,” Acta Mech., vol. 223, pp. 1137–1152, Jun. 2012. DOI: 10.1007/s00707-012-0622-3.
  • Z. Y. Zhong, W. M. Zhang, G. Meng, and M. Y. Wang, “Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory,” J. Microelectromech. Syst., vol. 24, pp. 431–445, Apr. 2015. DOI: 10.1109/JMEMS.2014.2332757.
  • W. J. Evans, L. Hu, and P. Keblinski, “Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination,” Appl. Phys. Lett., vol. 96, pp. 203112, 2010. DOI: 10.1063/1.3435465.
  • D. Nika, E. Pokatilov, A. Askerov, and A. Balandin, “Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering,” Phys. Rev. B., vol. 79, no. 15, p. 155413, Apr. 2009. DOI: 10.1103/PhysRevB.79.155413.
  • A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol., vol. 6, pp. 339–342, May. 2011. DOI: 10.1038/nnano.2011.71.
  • P. Weber, J. Guttinger, I. Tsioutsios, D. E. Chang, and A. Bachtold, “Coupling graphene mechanical resonators to superconducting microwave cavities,” Nano Lett., vol. 14, pp. 2854–2860, Apr. 2014. DOI: 10.1021/nl500879k.
  • A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater., vol. 10, no. 8, pp. 569–581, Jul. 2011. DOI: 10.1038/nmat3064.
  • M. Will et al., “High quality factor graphene-based two-dimensional heterostructure mechanical resonator,” Nano Lett., vol. 17, pp. 5950–5955, Sep. 2017. DOI: 10.1021/acs.nanolett.7b01845.
  • L. Li and Y. Hu, “Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects,” Int. J. Mech. Sci., vol. 120, pp. 159–170, Jan. 2017. DOI: 10.1016/j.ijmecsci.2016.11.025.
  • L. Li, H. Tang, and Y. Hu, “Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature,” Compos. Struct., vol. 184, pp. 1177–1188, Jan. 2018. DOI: 10.1016/j.compstruct.2017.10.052.
  • X. Zhu and L. Li, “On longitudinal dynamics of nanorods,” Int. J. Eng. Sci., vol. 120, pp. 129–145, Nov. 2017. DOI: 10.1016/j.ijengsci.2017.08.003.
  • X. Li, L. Li, Y. Hu, and W. Deng, “A refined nonlocal strain gradient theory for assessing scaling-dependent vibration behavior of microbeams,” World Acad. Sci. Eng. Technol. Int. J. Mech. Aerospace, Indus. Mechatron. Manufact. Eng., vol. 11, pp. 540–550, Mar. 2017. DOI: 10.1999/1307-6892/60330.
  • Y. Ma, “Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer,” Appl. Phys. Lett., vol. 101, pp. 211905, Nov. 2012. DOI: 10.1063/1.4767337.
  • R. Wilson and D. G. Cahill, “Limits to Fourier theory in high thermal conductivity single crystals,” Appl. Phys. Lett., vol. 107, pp. 203112, Nov. 2015. DOI: 10.1063/1.4935987.
  • J. R. Rice et al., “Foundations of solid mechanics,” Mechanics and Materials: Fundamentals and Linkages, MA Meyers, Ed. New York, NY, USA: John Wiley, 1999, pp. 3369.
  • F. Alvarez, D. Jou, and A. Sellitto, “Phonon hydrodynamics and phonon-boundary scattering in nanosystems,” J. Appl. Phys., vol. 105, pp. 014317, Jan. 2009. DOI: 10.1063/1.3056136.
  • R. A. Guyer and J. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, pp. 766, Aug. 1966. DOI: 10.1103/PhysRev.148.766.
  • L. Li, X. Li, and Y. Hu, “Free vibration analysis of nonlocal strain gradient beams made of functionally graded material,” Int. J. Eng. Sci., vol. 102, pp. 77–92, May. 2016. DOI: 10.1016/j.ijengsci.2016.02.010.
  • K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, “C 2 f, bn, and c nanoshell elasticity from ab initio computations,” Phys. Rev. B, vol. 64, pp. 235406, Dec. 2001. DOI: 10.1103/PhysRevB.64.235406.
  • X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, “Nonlinear elastic behavior of graphene: ab initio calculations to continuum description,” Phys. Rev. B, vol. 80, pp. 205407, Nov. 2009. DOI: 10.1103/PhysRevB.80.205407.
  • D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Phys. Rev. B, vol. 42, pp. 9458, Nov. 1990. DOI: 10.1103/PhysRevB.42.9458.
  • D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons,” J. Phys. Condens. Matter., vol. 14, pp. 783, Jan. 2002. DOI: 10.1088/0953-8984/14/4/312.
  • S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions,” J. Chem. Phys., vol. 112, pp. 6472–6486, Apr. 2000. DOI: 10.1063/1.481208.
  • L. Lindsay and D. Broido, “Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene,” Phys. Rev. B, vol. 81, no. 20, p. 205441, May. 2010. DOI: 10.1103/PhysRevB.81.205441.
  • J. H. Los, L. M. Ghiringhelli, E. J. Meijer, and A. Fasolino, “Improved long-range reactive bond-order potential for carbon. i. construction,” Phys. Rev. B, vol. 72, pp. 214102, Dec. 2005. DOI: 10.1103/PhysRevB.72.214102.
  • G. López-Polín et al., “Increasing the elastic modulus of graphene by controlled defect creation,” Nat. Phys., vol. 11, pp. 26–31, Jan. 2015. DOI: 10.1038/nphys3183.
  • Y. Huang, J. Wu, and K. C. Hwang, “Thickness of graphene and single-wall carbon nanotubes,” Phys. Rev. B, vol. 74, pp. 245413, Dec. 2006. DOI: 10.1103/PhysRevB.74.245413.
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, Jul. 2008. DOI: 10.1126/science.1157996.
  • G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, “Equivalent-continuum modeling of nano-structured materials,” Compos. Sci. Technol., vol. 62, pp. 1869–1880, Nov. 2002. DOI: 10.1016/S0266-3538(02)00113-6.
  • C. Gómez-Navarro, M. Burghard, and K. Kern, “Elastic properties of chemically derived single graphene sheets,” Nano Lett., vol. 8, pp. 2045–2049, Jun. 2008. DOI: 10.1021/nl801384y.
  • Q. Lu and R. Huang, “Nonlinear mechanics of single-atomic-layer graphene sheets,” Int. J. Appl. Mech., vol. 01, pp. 443–467, Sep. 2009. DOI: 10.1142/S1758825109000228.
  • B. WenXing, Z. ChangChun, and C. WanZhao, “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics,” Phys.B Condens. Matter., vol. 352, pp. 156–163, Oct. 2004. DOI: 10.1016/j.physb.2004.07.005.
  • Y. Zhang, Q. Pei, and C. Wang, “Mechanical properties of graphynes under tension: a molecular dynamics study,” Appl. Phys. Lett., vol. 101, pp. 081909, Aug. 2012. DOI: 10.1063/1.4747719.
  • N. Jing et al., “Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation,” Rsc Adv., vol. 2, pp. 9124–9129, Jul. 2012. DOI: 10.1039/c2ra21228e.
  • H. Zhao, K. Min, and N. Aluru, “Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension,” Nano Lett., vol. 9, pp. 3012–3015, Aug. 2009. DOI: 10.1021/nl901448z.
  • L. Zhou, Y. Wang, and G. Cao, “Elastic properties of monolayer graphene with different chiralities,” J. Phys. Condens. Matter., vol. 25, pp. 125302, Mar. 2013. [10.1088/0953- DOI: 8984/25/12/125302.
  • T. Chang and H. Gao, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” J. Mech. Phys. Solids., vol. 51, pp. 1059–1074, Jun. 2003. DOI: 10.1016/S0022-5096(03)00006-1.
  • C. Reddy, S. Rajendran, and K. Liew, “Equilibrium configuration and continuum elastic properties of finite sized graphene,” Nanotechnology, vol. 17, pp. 864, Jan. 2006. DOI: 10.1088/0957-4484/17/3/042.
  • F. Liu, P. Ming, and J. Li, “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” Phys. Rev. B, vol. 76, pp. 064120, Aug. 2007. DOI: 10.1103/PhysRevB.76.064120.
  • E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, “Nonlinear elasticity of monolayer graphene,” Phys. Rev. Lett., vol. 102, pp. 235502, Jun. 2009. DOI: 10.1103/PhysRevLett.102.235502.
  • J. H. Weiner, Statistical Mechanics of Elasticity. North Chelmsford, MA, USA: Courier Corporation, 2012.
  • D. Yoon, Y. W. Son, and H. Cheong, “Negative thermal expansion coefficient of graphene measured by Raman spectroscopy,” Nano Lett., vol. 11, pp. 3227–3231, Jul. 2011. DOI: 10.1021/nl201488g.
  • P. Shaina, L. George, V. Yadav, and M. Jaiswal, “Estimating the thermal expansion coefficient of graphene: the role of graphene–substrate interactions,” J. Phys. Condens. Matter., vol. 28, pp. 085301, Jan. 2016. DOI: 10.1088/0953-8984/28/8/085301.
  • K. Zakharchenko, J. Los, M. I. Katsnelson, and A. Fasolino, “Atomistic simulations of structural and thermodynamic properties of bilayer graphene,” Phys. Rev. B, vol. 81, pp. 235439, Apr. 2010. DOI: 10.1103/PhysRevB.81.235439.
  • W. Bao et al., “Controlled ripple texturing of suspended graphene and ultrathin graphite membranes,” Nat. Nanotechnol., vol. 4, pp. 562–566, Jul. 2009. DOI: 10.1038/nnano.2009.191.
  • W. Gao and R. Huang, “Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity,” J. Mech. Phys. Solids., vol. 66, pp. 42–58, May. 2014. DOI: 10.1016/j.jmps.2014.01.011.
  • Y. Magnin, G. Förster, F. Rabilloud, F. Calvo, A. Zappelli, and C. Bichara, “Thermal expansion of free-standing graphene: benchmarking semi-empirical potentials,” J. Phys. Condens. Matter., vol. 26, pp. 185401, Apr. 2014. DOI: 10.1088/0953-8984/26/18/185401.
  • H. Ghasemi and A. Rajabpour, “Thermal expansion coefficient of graphene using molecular dynamics simulation: a comparative study on potential functions,” J. Phys. Conf. Ser., vol. 785, pp. 012006, Jan. 2017. DOI: 10.1088/1742-6596/785/1/012006.
  • S. Linas et al., “Interplay between Raman shift and thermal expansion in graphene: temperature-dependent measurements and analysis of substrate corrections,” Phys. Rev. B, vol. 91, pp. 075426, Nov. 2015. DOI: 10.1103/PhysRevB.91.075426.
  • W. Cai et al., “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett., vol. 10, pp. 1645–1651, Apr. 2010. DOI: 10.1021/nl9041966.
  • L. A. Jauregui et al., “Thermal transport in graphene nanostructures: experiments and simulations,” ECS Trans., vol. 28, pp. 73–83, Apr. 2010. DOI: 10.1149/1.3367938.
  • A. A. Balandin et al., “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, pp. 902–907, Feb. 2008. DOI: 10.1021/nl0731872.
  • S. Ghosh, D. L. Nika, E. P. Pokatilov, I. Calizo, and A. A. Balandin, “Lattice Thermal Conductivity of Graphene,” in APS Meeting Abstracts, V. Pereira, Ed. College Park, MD, USA: American Physical Society, 2010, pp. V21.010.
  • L. Lindsay, D. Broido, and N. Mingo, “Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit,” Phys. Rev. B, vol. 82, pp. 161402, Oct. 2010. DOI: 10.1103/PhysRevB.82.161402.
  • E. Munoz, J. Lu and B. I. Yakobson, “Ballistic thermal conductance of graphene ribbons,” Nano Lett., vol. 10, pp. 1652–1656, May. 2010. DOI: https://doi.org/10.1021/nl904206d.
  • J. H. Seol et al., “Two-dimensional phonon transport in supported graphene,” Science, vol. 328, pp. 213–216, Apr. 2010. DOI: https://doi.org/10.1126/science.1184014.
  • J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, “Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations,” Phys. Rev. B, vol. 79, pp. 115401, Mar. 2009. DOI: 10.1103/PhysRevB.79.115401.
  • G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri, “Thermal conductivity of graphene and graphite: collective excitations and mean free paths,” Nano Lett., vol. 14, pp. 6109–6114, Oct. 2014. DOI: 10.1021/nl502059f.
  • E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: fundamentals and applications,” MRS Bull., vol. 37, pp. 1273–1281, Dec. 2012. DOI: 10.1557/mrs.2012.203.
  • R. Abdolvand, H. Fatemi, and S. Moradian, “Quality factor and coupling in piezoelectric mems resonators,” in Piezoelectric MEMS Resonators, H. Bhugra, G. Piazza, Eds. Berlin, Germany: Springer, 2017, pp. 133152.
  • C. Jeong, S. Datta, and M. Lundstrom, “Full dispersion versus debye model evaluation of lattice thermal conductivity with a Landauer approach,” J. Appl. Phys., vol. 109, pp. 073718, Apr. 2011. DOI: 10.1063/1.3567111.
  • T. Feng, X. Ruan, Z. Ye, and B. Cao, “Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: the effects of defect type and concentration,” Phys. Rev. B, vol. 91, no. 22, p. 224301, Jun. 2015. DOI: 10.1103/PhysRevB.91.224301.
  • M. H. Bae et al., “Ballistic to diffusive crossover of heat flow in graphene ribbons,” Nat. Commun., vol. 4, pp. 1734, Apr. 2013. DOI: 10.1038/ncomms2755.
  • Z. Aksamija and I. Knezevic, “Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering,” Appl. Phys. Lett., vol. 98, pp. 141919, Apr. 2011. DOI: 10.1063/1.3569721.
  • Z. Aksamija and I. Knezevic, “Thermal transport in graphene nanoribbons supported on SiO2,” Phys. Rev. B, vol. 86, pp. 165426, Oct. 2012. DOI: 10.1103/PhysRevB.86.165426.
  • S. Ghosh et al., “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett., vol. 92, pp. 151911, Apr. 2008. DOI: 10.1063/1.2907977.
  • X. Xu et al., “Length-dependent thermal conductivity in suspended single-layer graphene,” Nat Comms, vol. 5, pp. 3689, Apr. 2014. DOI: 10.1038/ncomms4689.
  • M. Mohr et al., “Phonon dispersion of graphite by inelastic x-ray scattering,” Phys. Rev. B, vol. 76, pp. 035439, May. 2007. DOI: 10.1103/PhysRevB.76.035439.
  • B. Qiu and X. Ruan, “Reduction of spectral phonon relaxation times from suspended to supported graphene,” Appl. Phys. Lett., vol. 100, pp. 193101, May. 2012. DOI: 10.1063/1.4712041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.