147
Views
25
CrossRef citations to date
0
Altmetric
Articles

A variable ESL/LW kinematic plate formulation for free-vibration thermoelastic analysis of laminated structures

&
Pages 452-474 | Received 06 Apr 2018, Accepted 05 May 2018, Published online: 20 Nov 2018

References

  • A. K. Noor and W. S. Burton, “Computational models for high-temperature multilayered composite plates and shells,” Appl. Mech. Rev., vol. 45, no. 10, pp. 419–446, 1992. doi:10.1115/1.3119742
  • J. L. Nowinski, Theory of Thermoelasticity with Applications, 1st ed. The Netherlands: Springer, Sijthoff and Noordhoff, 1978.
  • J. M. C. Duhamel, “Second memoire sur les phenomes thermomechaniques (second memorandum on thermo-mechanic phenomena),” J. Ecole Polytech., vol. 15, no. 25, pp. 1–57, 1837.
  • F. Neumann, Vorlesung über die Theorie des Elasticität der festen Körper und des Lichtäters. Leipzing: Teubner, 1885.
  • E. Almansi, “Use of the stress function in thermoelasticity,” Mem. Reale Accad. Sci. Torino Ser. 2, 1897.
  • O. Tedone, “Allgemeine theoreme der matematischen elastizitätslehre (integration theorie),” Encykl. Mat. Wiss., vol. 4, no. PART D, pp. 55–124, 1906.
  • W. Voigt, Lehrbuch der Kristallphysik. Berlin: Teubner, 1910.
  • G. A. Altay and M. Dökmeci, “Some variational principles for linear coupled thermoelasticity,” Int. J. Solids Struct., vol. 33, no. 26, pp. 3937–3948, 1996. doi:10.1016/0020-7683(95)00215-4
  • G. A. Altay and M. Dökmeci, “Fundamental variational equations of discontinuous thermopiezoelectric fields,” Int. J. Eng. Sci., vol. 34, no. 7, pp. 769–782, 1996. doi:10.1016/0020-7225(95)00133-6
  • N. C. Das, S. N. Das, and B. Das, “Eigenvalue approach to thermoelasticity,” J. Therm. Stresses, vol. 6, no. 1, pp. 35–43, 1983. doi:10.1080/01495738308942164
  • A. A. Cannarozzi and F. A. Umbertini, “A mixed variational method for linear coupled thermoelastic analysis,” Int. J. Solids Struct., vol. 38, no. 4, pp. 717–739, 2001. doi:10.1016/S0020-7683(00)00061-5
  • J. N. Reddy and D. H. Robbins, “Theories and computational models for composite laminates,” Appl. Mech. Rev., vol. 47, pp. 147–165, 1994. doi:10.1115/1.3111076
  • T. K. Varadan and K. Bhaskar, “Review of different theories for the analysis of composites,” J. Aerosp. Soc. India, vol. 49, pp. 202–208, 1997.
  • E. Carrera, “Developments, ideas and evaluation based upon Reissner’s mixed variational theorem in the modeling of multilayered plates and shells,” Appl. Mech. Rev., vol. 54, pp. 301–329, 2001. doi:10.1115/1.1385512
  • T. Kant and R. K. Khare, “Finite element thermal stress analysis of composite laminates using a higher-order theory,” J. Therm. Stresses, vol. 17, no. 2, pp. 229–255, 1994. doi:10.1080/01495739408946257
  • A. A. Khdeir and J. N. Reddy, “Thermal stresses and deflections of cross-ply laminated plates using refined plate theories,” J. Therm. Stresses, vol. 14, no. 4, pp. 419–438, 1991. doi:10.1080/01495739108927077
  • W. Zhen and C. Wanji, “A global-local higher order theory for multilayered shells and the analysis of laminated cylindrical shell panels,” Compos. Struct., vol. 84, no. 4, pp. 350–361, 2008. doi:10.1016/j.compstruct.2007.10.006
  • R. K. Khare, T. Kant, and A. K. Garg, “Closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated shallow shells,” Compos. Struct., vol. 59, no. 3, pp. 313–340, 2003. doi:10.1016/S0263-8223(02)00245-3
  • A. A. Khdeir, “Thermoelastic analysis of cross-ply laminated circular cylindrical shells,” Int. J. Solids Struct., vol. 33, no. 27, pp. 4007–4017, 1996. doi:10.1016/0020-7683(95)00229-4
  • A. A. Khdeir, M. D. Rajab, and J. N. Reddy, “Thermal effects on the response of cross-ply laminated shallow shells,” Int. J. Solids Struct., vol. 29, no. 5, pp. 653–667, 1992. doi:10.1016/0020-7683(92)90059-3
  • A. Barut, E. Madenci, and A. Tessler, “Nonlinear thermoelastic analysis of composite panels under non-uniform temperature distribution,” Int. J. Solids Struct., vol. 37, no. 27, pp. 3681–3713, 2000. doi:10.1016/S0020-7683(99)00119-5
  • C. J. Miller, W. A. Millavec, and T. P. Richer, “Thermal stress analysis of layered cylindrical shells,” AIAA J., vol. 19, no. 4, pp. 523–530, 1981. doi:10.2514/3.7790
  • P. C. Dumir, J. K. Nath, P. Kumari, and S. Kapuria, “Improved efficient zigzag and third order theories for circular cylindrical shells under thermal loading,” J. Therm. Stresses, vol. 31, no. 4, pp. 343–367, 2008. doi:10.1080/01495730701876791
  • A. S. D. Wang and F. W. Crossman, “Calculation of edge stresses in multi-layer by sub-structuring,” J. Compos. Mater., vol. 12, pp. 76–83, 1978. doi:10.1177/002199837801200106
  • N. J. Pagano and S. R. Soni, “Global-local laminate variational model,” Int. J. Solids Struct., vol. 19, no. 3, pp. 207–228, 1983. doi:10.1016/0020-7683(83)90058-6
  • R. Jones, R. Callinan, K. K. Teh, and K. C. Brown, “Analysis of multi-layer laminates using three-dimensional super elements,” Int. J. Numer. Methods Eng., vol. 20, no. 3, pp. 583–587, 1984. doi:10.1002/nme.1620200316
  • A. Pagani, S. Valvano, and E. Carrera, “Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements,” J. Sandw. Struct. Mater., vol. 20, no. 1, pp. 4–41, 2018. doi:10.1177/1099636216650988
  • E. Carrera, A. Pagani, and S. Valvano, “Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures,” Compos. Part B: Eng., vol. 111, pp. 294–314, 2017. doi:10.1016/j.compositesb.2016.12.001
  • E. Carrera and S. Valvano, “A variable kinematic shell formulation applied to thermal stress of laminated structures,” J. Therm. Stresses, vol. 40, pp. 803–827, 2017. doi:10.1080/01495739.2016.1253439
  • E. Carrera and S. Valvano, “Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements,” J. Intell. Mater. Syst. Struct., vol. 28, no. 20, pp. 2959–2987, 2017. doi:10.1177/1045389X17704913
  • E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Arch. Comput. Methods Eng., vol. 9, no. 2, pp. 87–140, 2002. doi:10.1007/BF02736649
  • E. Carrera, “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking,” Arch. Comput. Methods Eng., vol. 10, no. 3, pp. 215–296, 2003. doi:10.1007/BF02736224
  • E. Carrera, “Temperature profile influence on layered plates response considering classical and advanced theories,” AIAA J., vol. 40, no. 9, pp. 1885–1896, 2002. doi:10.2514/2.1868
  • P. Nali, E. Carrera, and A. Calvi, “Advanced fully coupled thermo-mechanical plate elements for multilayered structures subjected to mechanical and thermal loading,” Int. J. Numer. Methods Eng., vol. 85, pp. 869–919, 2011.
  • E. Carrera and A. Ciuffreda, “Closed-form solutions to assess multilayered-plate theories for various thermal stress problems,” J. Therm. Stresses, vol. 27, pp. 1001–1031, 2004. doi:10.1080/01495730490498584
  • E. Carrera, “An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates,” J. Therm. Stresses, vol. 23, no. 9, pp. 797–831, 2000. doi:10.1080/014957300750040096
  • A. Robaldo and E. Carrera, “Mixed finite elements for thermoelastic analysis of multilayered anisotropic plates,” J. Therm. Stresses, vol. 30, pp. 165–194, 2007. doi:10.1080/01495730600897385
  • S. Brischetto, R. Leetsch, E. Carrera, T. Wallmersperger, and B. Kröplin, “Thermo-mechanical bending of functionally graded plates,” J. Therm. Stresses, vol. 31, no. 3, pp. 286–308, 2008. doi:10.1080/01495730701876775
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Boca Raton: CRC Press, 1997.
  • E. Carrera, F. Fazzolari, and M. Cinefra, Thermal Stress Analysis of Composite Beams, Plates and Shells, Computational Modelling and Applications. Amsterdam: Academic Press, 2017.
  • M. Cinefra, S. Valvano, and E. Carrera, “Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element,” J. Therm. Stresses, vol. 39, no. 2, pp. 121–141, 2016. doi:10.1080/01495739.2015.1123591
  • E. Carrera, S. Valvano, and G. M. Kulikov, “Multilayered plate elements with node-dependent kinematics for electro-mechanical problems,” Int. J. Smart Nano Mater., pp. 1–39, 2017. DOI: 10.1080/19475411.2017.1376722. doi:10.1080/19475411.2017.1376722
  • E. Carrera, “Multilayered shell theories accounting for layerwise mixed description. Part 1: governing equations,” AIAA J., vol. 37, no. 9, pp. 1107–1116, 1999. doi:10.2514/2.821
  • E. Carrera, “Multilayered shell theories accounting for layerwise mixed description. Part 2: numerical evaluations,” AIAA J., vol. 37, no. 9, pp. 1117–1124, 1999. doi:10.2514/2.822
  • S. Valvano and E. Carrera, “Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures,” Facta Univers. Ser.: Mech. Eng., vol. 15, no. 1, pp. 1–30, 2017. doi:10.22190/FUME170315001V
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation. Chichester: John Wiley & Sons, 2014.
  • E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aelotropic elastic plates,” J. Appl. Mech., vol. 28, pp. 402–408, 1961. doi:10.1115/1.3641719
  • W. T. Koiter, “On the foundations of the linear theory of thin elastic shell,” Proc. Kon. Nederl. Akad. Wetensch., vol. 73, pp. 169–195, 1970.
  • P. G. Ciarlet and L. Gratie, “Another approach to linear shell theory and a new proof of Korn’s inequality on a surface,” C. R. Acad. Sci. Paris, vol. 340, pp. 471–478, 2005. doi:10.1016/j.crma.2005.01.021
  • E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., vol. 12, no. 2, pp. 69–77, 1945.
  • R. D. Mindlin, “Influence of rotary inertia and shear flexural motion of isotropic, elastic plates,” J. Appl. Mech., vol. 18, pp. 31–38, 1951.
  • H. Murakami, “Laminated composite plate theory with improved in-plane responses,” J. Appl. Mech., vol. 53, pp. 661–666, 1986. doi:10.1115/1.3171828
  • T. J. R. Hughes, M. Cohen, and M. Horaun, “Reduced and selective integration techniques in the finite element methods,” Nucl. Eng. Des., vol. 46, pp. 203–222, 1978. doi:10.1016/0029-5493(78)90184-X
  • E. Pugh, E. Hinton, and O. Zienkiewicz, “A study of quadrilateral plate bending elements with reduced integration,” Int. J. Numer. Methods Eng., vol. 12, pp. 1059–1079, 1978. doi:10.1002/nme.1620120702
  • K. J. Bathe and E. N. Dvorkin, “A four node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation,” Int. J. Numer. Methods Eng., vol. 21, pp. 367–383, 1985. doi:10.1002/nme.1620210213
  • K. J. Bathe and E. Dvorkin, “A formulation of general shell elements - the use of mixed interpolation of tensorial components,” Int. J. Numer. Methods Eng., vol. 22, pp. 697–722, 1986. doi:10.1002/nme.1620220312
  • F. Auricchio and E. Sacco, “MITC finite elements for laminated composites plates,” Int. J. Numer. Methods Eng., vol. 50, pp. 707–738, 1999.
  • S. Brischetto and E. Carrera, “Coupled thermo-mechanical analysis of one-layered and multilayered plates,” Compos. Struct., vol. 92, pp. 1793–1812, 2010. doi:10.1016/j.compstruct.2010.01.020
  • F. A. Fazzolari and E. Carrera, “Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics Ritz formulation,” Eur. J. Mech. A-Solid., vol. 44, pp. 157–174, 2014. doi:10.1016/j.euromechsol.2013.10.011
  • M. Cinefra and S. Valvano, “A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites,” Mech. Adv. Mater. Struct., vol. 23, no. 11, pp. 1312–1325, 2016. doi:10.1080/15376494.2015.1070304
  • F. A. Fazzolari and E. Carrera, “Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation,” Compos. Part B: Eng., vol. 50, pp. 67–81, 2013. doi:10.1016/j.compositesb.2013.01.020
  • S. D. Kulkarni and S. Kapuria, “Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third order zigzag theory,” Comput. Mech., vol. 42, no. 6, pp. 803–824, 2008. doi:10.1007/s00466-008-0285-z
  • M. Shariyat, “A generalized globallocal high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads,” Int. J. Mech. Sci., vol. 52, no. 3, pp. 495–514, 2010. doi:10.1016/j.ijmecsci.2009.11.010
  • A. Chakrabarti and A. H. Sheikh, “Vibration of laminate-faced sandwich plate by a new refined element,” J. Aerosp. Eng., vol. 17, no. 3, pp. 123–134, 2004. doi:10.1061/(ASCE)0893-1321(2004)17:3(123)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.