94
Views
7
CrossRef citations to date
0
Altmetric
Special Issue to commemorate the 90th birthday of Richard B. Hetnarski and 40 years of the Journal of Thermal Stresses

Spatial behavior of the dual-phase-lag deformable conductors

ORCID Icon & ORCID Icon
Pages 1276-1296 | Received 14 Mar 2018, Accepted 17 May 2018, Published online: 12 Feb 2019

References

  • D. Y. Tzou, “A unified field approach for heat conduction from macro- to micro-scales,” J. Heat Trans., vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Transfer, vol. 38, no. 17, pp. 3231–3240, 1995. DOI: 10.1016/0017-9310(95)00052-B.
  • D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” J. Thermophys Heat Transfer, vol. 9, no. 4, pp. 686–693, 1995. DOI: 10.2514/3.725.
  • D. Y. Tzou, Macro- to Microscale Heat Transfer: the Lagging Behavior. Chichester: John Wiley and Sons, 2015. DOI:10.1002/9781118818275.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • R. Quintanilla, “Exponential stability in the dual-phase-lag heat conduction theory,” J. Non-Equil. Thermody., vol. 27, no. 3, pp. 217–227, 2002. DOI: 10.1515/JNETDY.2002.012.
  • R. Quintanilla and R. Racke, “A note on stability in dual-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 49, no. 7–8, pp. 1209–1213, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.016.
  • R. Quintanilla and R. Racke, “Qualitative aspects in dual-phase-lag thermoelasticity,” SIAM J Appl. Math., vol. 66, no. 3, pp. 977–1001, 2006. DOI: 10.1137/05062860X.
  • R. Quintanilla and R. Racke, “Qualitative aspects in dual-phase-lag heat conduction,” Proc. Math. Phys. Eng. Sci., vol. 463, no. 2079, pp. 659–674, 2007. DOI: 10.1098/rspa.2006.1784.
  • P. M. Jordan, W. Dai, and R. E. Mickens, “A note on the delayed heat equation: instability with respect to initial data,” Mech. Res. Commun., vol. 35, no. 6, pp. 414–420, 2008. DOI: 10.1016/j.mechrescom.2008.04.001.
  • R. Quintanilla, “A well-posed problem for the dual-phase-lag heat conduction,” J. Therm. Stresses, vol. 31, no. 3, pp. 260–269, 2008. DOI: 10.1080/01495730701738272.
  • K. Ramadan, “Semi-analytical solutions for the dual phase lag heat conduction in multilayered media,” Int. J. Therm. Sci., vol. 48, no. 1, pp. 14–25, 2009. DOI: 10.1016/j.ijthermalsci.2008.03.004.
  • R. Prasad, R. Kumar, and S. Mukhopadhyay, “Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags,” IJESRT, vol. 48, no. 12, pp. 2028–2043, 2010. DOI: 10.1016/j.ijengsci.2010.04.011.
  • A. H. Akbarzadeh and Z. T. Chen, “Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory,” Int. J. Thermophys., vol. 33, no. 6, pp. 1100–1125, 2012. DOI: 10.1007/s10765-012-1204-2.
  • S. Kothari and S. Mukhopadhyay, “Some theorems in linear thermoelasticity with dual phase-lags for an anisotropic medium,” J. Therm. Stresses, vol. 36, no. 10, pp. 985–1000, 2013. DOI: 10.1080/01495739.2013.788896.
  • M. Fabrizio and F. Franchi, “Delayed thermal models: stability and thermodynamics,” J. Therm. Stresses, vol. 37, no. 2, pp. 160–173, 2014. DOI: 10.1080/01495739.2013.839619.
  • M. Fabrizio and B. Lazzari, “Stability and second law of thermodynamics in dual-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 74, pp. 484–489, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.027.
  • N. Afrin, Y. Zhang, and J. K. Chen, “Dual-phase lag behavior of a gas-saturated porous-medium heated by a short-pulsed laser,” Int. J. Therm. Sci., vol. 75, pp. 21–27, 2014. DOI: 10.1016/j.ijthermalsci.2013.07.019.
  • S. Mukhopadhyay, S. Kothari, and R. Kumar, “Dual phase-lag thermoelasticity,” in Encyclopedia of Thermal Stresses, R. B. Hetnarski Ed. Springer-Verlag, Dordrecht, 2014, pp. 1003–1019. DOI: 10.1007/978-94-007-2739-7_706.
  • S. Chiriţă, M. Ciarletta, and V. Tibullo, “On the wave propagation in the time differential dual-phase-lag thermoelastic model,” Proc. Math. Phys. Eng. Sci., vol. 471, no. 2183, art. no. 20150400, 2015. DOI: 10.1098/rspa.2015.0400.
  • S. Chiriţă, C. D’Apice, and V. Zampoli, “The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence,” Int. J. Heat Mass Transfer, vol. 102, pp. 226–232, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.019.
  • C. D’Apice, S. Chiriţă and V. Zampoli, “On the well-posedness of the time differential three-phase-lag thermoelasticity model,” Arch. Mech., vol. 68, no. 5, pp. 371–393, 2016.
  • M. Fabrizio, B. Lazzari, and V. Tibullo, “Stability and thermodynamic restrictions for a dual-phase-lag thermal model,” J. Non-Equil. Thermody., vol. 42, no. 3, pp. 243–252, 2017. DOI: 10.1515/jnet-2016-0039.
  • S. Chiriţă, “On the time differential dual-phase-lag thermoelastic model,” Meccanica, vol. 52, no. 1–2, pp. 349–361, 2017. DOI: 10.1007/s11012-016-0414-2.
  • S. Chiriţă, M. Ciarletta, and V. Tibullo, “Qualitative properties of solutions in the time differential dual-phase-lag model of heat conduction,” Appl. Math. Model., vol. 50, pp. 380–393, 2017. DOI: 10.1016/j.apm.2017.05.023.
  • S. Chiriţă, M. Ciarletta, and V. Tibullo, “On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction,” Int. J. Heat Mass Transfer, vol. 114, pp. 277–285, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.071.
  • R. Quintanilla, “On uniqueness and stability for a thermoelastic theory,” Math. Mech. Solids, vol. 22, no. 6, pp. 1387–1396, 2017. DOI: 10.1177/1081286516634154.
  • A. Magana and R. Quintanilla, “On the existence and uniqueness in phase-lag thermoelasticity,” Meccanica, vol. 53, no. 1–2, pp. 125–134, 2018. DOI: 10.1007/s11012-017-0727-9.
  • R. Kovacs and P. Van, “Thermodynamical consistency of the dual-phase-lag heat conduction equation,” Continuum Mech. Therm., 2017, DOI: 10.1007/s00161-017-0610-x.
  • V. Zampoli and A. Landi, “A domain of influence result about the time differential three-phase-lag thermoelastic model,” J. Therm. Stresses, vol. 40, no. 1, pp. 108–120, 2017. DOI: 10.1080/01495739.2016.1195242.
  • C. D’Apice and V. Zampoli, “Advances on the time differential three-phase-lag heat conduction model and major open issues,” AIP Conf. Proc., vol. 1863, art. no. 560056, 2017. DOI: 10.1063/1.4992739.
  • S. Chiriţă, “On high-order approximations for describing the lagging behavior of heat conduction,” Math. Mech. Solids, 2018. DOI: 10.1177/1081286518758356.
  • S. Chiriţă, “High-order approximations of three-phase-lag heat conduction model: some qualitative results,” J. Therm. Stresses, vol. 41, no. 5, pp. 608–626, 2018. DOI: 10.1080/01495739.2017.1397494.
  • V. Zampoli, “’Uniqueness theorems about high-order time differential thermoelastic models,” Ricerche di Matematica, 2018. DOI: 10.1007/s11587-018-0351-6.
  • V. Zampoli, “Some continuous dependence results about high-order time differential thermoelastic models,” J. Therm. Stresses, vol. 41, no. 7, pp. 827–846, 2018. DOI: 10.1080/01495739.2018.1439789.
  • S. Chiriţă, “High-order effects of thermal lagging in deformable conductors,” International Journal of Heat and Mass Transfer.
  • D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity; a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity,” J. Therm. Stresses, vol. 22, nos. 4–5, pp. 451–476, 1999. DOI: 10.1080/014957399280832.
  • R. A. Toupin, “Saint-Venant’s principle,” Arch. Ration. Mech. Anal., vol. 18, no. 2, pp. 83–96, 1965. DOI: 10.1007/BF00282253.
  • J. N. Flavin, R. J. Knops, and L. E. Payne, “Decay estimates for the constrained elastic cylinder of variable cross-section,” Q. APPL. MATH., vol. 47, no. 2, pp. 325–350, 1989. DOI: 10.1090/qam/998106.
  • S. Chiriţă, and M. Ciarletta, “Spatial estimates for the constrained anisotropic elastic cylinder,” J. Elast., vol. 85, no. 3, pp. 189–213, 2006. DOI: 10.1007/s10659-006-9081-1.
  • C. O. Horgan, L. E. Payne, and L. T. Wheeler, “Spatial decay estimates in transient heat conduction,” Quart. Appl. Math, vol. 42, no. 1, pp. 119–127, 1984. DOI: 10.1090/qam/736512.
  • S. Chiriţă, “On the spatial decay estimates in certain time-dependent problems of continuum mechanics,” Arch. Mech., vol. 47, no. 4, pp. 755–771, 1995.
  • S. Chirită and R. Quintanilla, “On Saint-Venant’s principle in linear elastodynamics,” J. Elast., vol. 42, no. 3, pp. 201–215, 1996. DOI: 10.1007/BF00041790.
  • S. Chiriţă and M. Ciarletta, “Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua,” Eur. J. Mech. A Solids., vol. 18, no. 5, pp. 915–933, 1999. DOI: 10.1016/S0997-7538(99)00121-7.
  • S. Chiriţǎ, “Saint-Venant’s principle in linear thermoelasticity,” J. Therm. Stresses, vol. 18, no. 5, pp. 485–496, 1995. DOI: 10.1080/01495739508946316.
  • R. Quintanilla, “End effects in thermoelasticity,” Math. Method. Appl. Sci., vol. 24, no. 2, pp. 93–102, 2001. DOI: 10.1002/1099-1476(20010125)24:2<93::AID-MMA199>3.0.CO;2-N.
  • C. O. Horgan and R. Quintanilla, “Spatial behaviour of solutions of the dual-phase-lag heat equation,” Math. Method. Appl. Sci., vol. 28, no. 1, pp. 43–57, 2005. DOI: 10.1002/mma.548.
  • R. Quintanilla, “End effects in three dual-phase-lag heat conduction,” Appl. Anal., vol. 87, no. 8, pp. 943–955, 2008. DOI: 10.1080/00036810802428938.
  • R. Quintanilla, “Spatial behavior of solutions of the three-phase-lag heat equation,” Appl. Math. Comput., vol. 213, no. 1, pp. 153–162, 2009. DOI: 10.1016/j.amc.2009.03.005.
  • R. Quintanilla and R. Racke, “Spatial behavior in phase-lag heat conduction,” Differ. Integral., vol. 28, no. 3–4, pp. 291–308, 2015.
  • M. C. Leseduarte and R. Quintanilla, “Phragmén-Lindelöf alternative for an exact heat conduction equation with delay,” Commun. Pure Appl. Math., vol. 12, no. 3, pp. 1221–1235, 2013. DOI: 10.3934/cpaa.2013.12.1221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.