146
Views
16
CrossRef citations to date
0
Altmetric
Articles

Transient responses of nanosandwich structure based on size-dependent generalized thermoelastic diffusion theory

, &
Pages 1171-1191 | Received 27 Mar 2019, Accepted 13 May 2019, Published online: 25 Jun 2019

References

  • S. Kamarian, M. Shakeri, M. H. Yas, M. Bodaghi, and A. Pourasghar, “Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs,” J. Sandwich Struct. Mater., vol. 17, no. 6, pp. 632–665, 2015. DOI: 10.1177/1099636215590280.
  • G. Sapra, M. Sharma, and R. Vig, “Active vibration control of a beam instrumented with MWCNT/epoxy nanocomposite sensor and PZT-5H actuator, robust to variations in temperature,” Microsyst. Technol., vol. 24, no. 3, pp. 1683–1694, 2018. DOI: 10.1007/s00542-017-3551-1.
  • A. Kumar, K. Sharma, and A. R. Dixit, “A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications,” Microsyst. Technol., vol. 54, pp. 5992–6026, 2019. DOI: 10.1007/s10853-018-03244-3.
  • F. Ebrahimi and M. Karimiasl, “Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams,” Mech. Adv. Mater. Struct., vol. 25, no. 11, pp. 943–952, 2018. DOI: 10.1080/15376494.2017.1329468.
  • A. F. Avila, M. G. R. Carvalho, E. C. Dias, and D. T. L. da Cruz, “Nano-structured sandwich composites response to low-velocity impact,” Compos. Struct., vol. 92, pp. 745–751, 2010. DOI: 10.1016/j.compstruct.2009.09.010.
  • O. Rahmani, S. Deyhim, and S. A. H. Hosseini, “Size-dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory,” Steel Compos. Struct., vol. 27, pp. 371–388, 2018.
  • A. Oriani, “Thermomigration in solid metals,” J. Phys. Chem, vol. 30, pp. 339–351, 1969. DOI: 10.1016/0022-3697(69)90315-1.
  • Y. S. Pidstrygach, “Differential equations of thermodiffusion problem in isotropic deformable solid,” Dop Ukrainian Acad. Sci., vol. 2, pp. 169–172, 1961.
  • W. Nowacki, “Dynamical problems of diffusion in solids,” Eng. Fract. Mech., vol. 8, no. 1, pp. 261–266, 1976. DOI: 10.1016/0013-7944(76)90091-6.
  • Z. S. Olesiak and Y. A. Pyryev, “A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder,” Int. J. Eng. Sci., vol. 33, no. 6, pp. 773–780, 1995. DOI: 10.1016/0020-7225(94)00099-6.
  • K. K. Tamma and X. M. Zhou, “Macroscale and microscale thermal transport and thermo-mechanical interactions: Some noteworthy perspectives,” J. Therm. Stresses, vol. 21, no. 3, pp. 405–449, 1998. DOI: 10.1080/01495739808956154.
  • D. D. Joseph and L. Preziosi, “Heat waves,” Rev. Mod. Phys., vol. 61, no. 1, pp. 41–73, 1989. DOI: 10.1103/RevModPhys.61.41.
  • H. H. Sherief, F. A. Hamza, and H. A. Saleh, “The theory of generalized thermoelastic diffusion,” Int. J. Eng. Sci., vol. 42, no. 5–6, pp. 591–608, 2004. DOI: 10.1016/j.ijengsci.2003.05.001.
  • R. Kumar and T. Kansal, “Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate,” Int. J. Solids Struct., vol. 45, no. 22–23, pp. 5890–5913, 2008. DOI: 10.1016/j.ijsolstr.2008.07.005.
  • Y. H. Suo, and S. P. Shen, “Dynamical theoretical models and variational principles for coupled temperature-diffusion-mechanics,” Acta Mech., vol. 223, no. 1, pp. 29–41, 2012. DOI: 10.1007/s00707-011-0545-4.
  • V. Peshkov, “Second sound in helium II,” J. Phys., vol. 8, pp. 381–382, 1944.
  • K. Mitra, S. Kumar, A. Vedavarz, and M. K. Moallemi, “Experimental evidence of hyperbolic heat conduction in processed meat,” J. Heat Transf., vol. 117, no. 3, pp. 568–573, 1995. DOI: 10.1115/1.2822615.
  • C. C. Ackerman, B. Bertman, H. A. Fairbank, and R. A. Guyer, “Second Sound in Solid Helium,” Phys. Rev. Lett., vol. 16, no. 18, pp. 789–791, 1966. DOI: 10.1103/PhysRevLett.16.789.
  • S. L. Sobolev, “Nonlocal diffusion models: Application to rapid solidification of binary mixtures,” Int. J. Heat Mass Transf., vol. 71, pp. 295–302, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.048.
  • H. H. Sherief and H. A. Saleh, “A half-space problem in the theory of generalized thermoelastic diffusion,” Int. J. Solids Struct., vol. 42, no. 15, pp. 4484–4493, 2005. DOI: 10.1016/j.ijsolstr.2005.01.001.
  • M. Aouadi, “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion,” Int. J. Solids Struct., vol. 44, no. 17, pp. 5711–5722, 2007. DOI: 10.1016/j.ijsolstr.2007.01.019.
  • R. H. Xia, X. G. Tian, and Y. P. Shen, “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity,” Int. J. Eng. Sci., vol. 47, no. 5–6, pp. 669–679, 2009. DOI: 10.1016/j.ijengsci.2009.01.003.
  • T. H. He, C. L. Li, S. H. Shi, and Y. Ma, “A two-dimensional generalized thermoelastic diffusion problem for a half-space,” Eur. J. Mech. A-Solids, vol. 52, pp. 37–43, 2015. DOI: 10.1016/j.euromechsol.2015.01.002.
  • C. L. Li, H. L. Guo, X. Tian, and X. G. Tian, “Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock,” J. Therm. Stress, vol. 40, no. 3, pp. 389–401, 2017. DOI: 10.1080/01495739.2016.1218745.
  • C. L. Li, H. L. Guo, and X. G. Tian, “Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity,” Int. J. Mech. Sci., vol. 131, pp. 234–244, 2017. DOI: 10.1016/j.ijmecsci.2017.07.008.
  • S. Govindjee and J. L. Sackman, “On the use of continuum mechanics to estimate the properties of nanotubes,” Solid State Commun., vol. 110, no. 4, pp. 227–230, 1999. DOI: 10.1016/S0038-1098(98)00626-7.
  • A. C. Eringen, “Linear theory of nonlocal elasticity and dispersion of plane waves,” Int. J. Eng. Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • A. C. Eringen and D. B. G. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • C. W. Lim, G. Zhang, and J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • C. L. Li, H. L. Guo, and X. G. Tian, “Nonlocal second-order strain gradient elasticity model and its application in wave propagating in carbon nanotubes,” Microsyst. Technol., pp. 1–13, 2018.
  • C. L. Li, H. L. Guo, and X. G. Tian, “Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads,” Wave Random Complex Medium, vol. 28, no. 2, pp. 270–286, 2018. DOI: 10.1080/17455030.2017.1341670.
  • C. L. Li, H. L. Guo, and X. G. Tian, “Size-dependent effect on thermoelectro- mechanical responses of heated nano-sized piezoelectric plate,” Wave Random Complex Medium, vol. 29, no. 3, pp. 1–19, 2018.
  • C. L. Li, H. L. Guo, X. G. Tian, and T. H. He, “Nonlocal diffusion –elasticity based on nonlocal mass transfer and nonlocal elasticity and its application in shock-induced responses analysis,” Mech. Adv. Mater. Struct., pp. 1–12, 2019. DOI: 10.1080/15376494.2019.1601308.
  • O. Narayan and S. Ramaswamy, “Anomalous heat conduction in one-dimensional momentum-conserving systems,” Phys. Rev. Lett., vol. 89, pp. 200601, 2002.
  • I. Calvo, R. Sanchez, B. A. Carreras, and B. van Milligen, “Fractional generalization of Fick’s law: A microscopic approach,” Phys. Rev. Lett., vol. 99, pp. 230603, 2007.
  • Y. Sagi, M. Brook, I. Almog, and N. Davidson, “Observation of anomalous diffusion and fractional selfsimilarity in one dimension,” Phys. Rev. Lett., vol. 108, pp. 093002, 2012.
  • C. L. Li, H. L. Guo, and X. G. Tian, “A size-dependent generalized thermoelastic diffusion theory and its application,” J. Therm. Stress, vol. 40, no. 5, pp. 603–626, 2017. DOI: 10.1080/01495739.2017.1300786.
  • C. M. Wang, Y. Y. Zhang, S. S. Ramesh, and S. Kitipornchai, “Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory,” J. Phys. D Appl. Phys., vol. 39, no. 17, pp. 3904, 2006. DOI: 10.1088/0022-3727/39/17/029.
  • J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams,” Int. J. Eng. Sci., vol. 45, no. 2–8, pp. 288–307, 2007. DOI: 10.1016/j.ijengsci.2007.04.004.
  • M. Arefi and A. M. Zenkour, “A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment,” J. Sandwich Struct. Mater., vol. 18, no. 5, pp. 624–651, 2016. DOI: 10.1177/1099636216652581.
  • J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” Phys. Rev. Lett., vol. 79, no. 7, pp. 1297–1300, 1997. DOI: 10.1103/PhysRevLett.79.1297.
  • W. H. Duan, C. M. Wang, and Y. Y. Zhang, “Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics,” J. Appl. Phys., vol. 101, no. 2, pp. 024305, 2007. DOI: 10.1063/1.2423140.
  • H. S. Shen, Y. M. Xu, and C. L. Zhang, “Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity,” Comput. Methods Appl. Mech. Eng., vol. 267, pp. 458–470, 2013. DOI: 10.1016/j.cma.2013.10.002.
  • A. Kullberg, G. J. Morales, and J. E. Maggs, “Comparison of a radial fractional transport model with tokamak experiments,” Phys. Plasmas, vol. 21, no. 3, pp. 032310, 2014. DOI: 10.1063/1.4868862.
  • D. Del-Castillo-Negrede, P. Mantica, V. Naulin, and J. J. Rasmussen, “Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments,” Nucl. Fusion, vol. 48, pp. 075009, 2008. DOI: 10.1088/0029-5515/48/7/075009.
  • L. Brancik, “Programs for fast numerical inversion of Laplace Transforms in MATLAB Language Environment,” Proc. Seventh Prague Conf. MATLAB’99, pp. 27–39, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.