202
Views
36
CrossRef citations to date
0
Altmetric
Articles

A memory response in the vibration of a microscale beam induced by laser pulse

ORCID Icon, ORCID Icon &
Pages 1415-1431 | Received 07 May 2019, Accepted 23 May 2019, Published online: 27 Jun 2019

References

  • R. S. Pereira, “Atomic force microscopy as a novel pharmacological tool,” Biochem. Pharmacol., vol. 62, no. 8, pp. 975–983, 2001. DOI: 10.1016/S0006-2952(01)00746-8.
  • J. Pei, F. Tian, and T. Thundat, “Glucose biosensor based on the microcantilever,” Anal. Chem., vol. 76, no. 2, pp. 292–297, 2004. DOI: 10.1021/ac035048k.
  • M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol., vol. 2, no. 2, pp. 114–120, 2007. DOI: 10.1038/nnano.2006.208.
  • N. A. Stelmashenko, M. G. Walls, L. M. Brown, and Y. V. Milman, “Microindentations on W and Mo oriented single crystals: An STM study,” Acta Metal. Mater., vol. 41, no. 10, pp. 2855–2865, 1993. DOI: 10.1016/0956-7151(93)90100-7.
  • W. J. Poole, M. F. Ashby, and N. A. Fleck, “Micro-hardness of annealed and work-hardened copper polycrystals,” Scripta Mater, vol. 34, no. 4, pp. 559–564, 1996. DOI: 10.1016/1359-6462(95)00524-2.
  • G. Stan, V. Ciobanu, P. M. Parthangal, and R. F. Cook, “Diameter dependent radial and tangential elastic moduli of ZnO nanowires,” Nano Lett., vol. 82, pp. 944–947, 2007.
  • S. Cuenot, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B, vol. 69, p. 165410, 2004. DOI: 10.1103/PhysRevB.69.165410.
  • N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: Theory and experiment,” Acta Metal. Mater., vol. 42, no. 2, pp. 475–487, 1994. DOI: 10.1016/0956-7151(94)90502-9.
  • Q. Ma, and D. R. Clarke, “Size dependent hardness of silver single crystals,” J. Mater. Res., vol. 10, no. 4, pp. 853–863, 1995. DOI: 10.1557/JMR.1995.0853.
  • J. S. Stolken, and A. G. Evans, “Microbend test method for measuring the plasticity length scale,” Acta Mater., vol. 46, pp. 5109–5115, 1998. DOI: 10.1016/S1359-6454(98)00153-0.
  • A. C. M. Chong, and D. C. C. Lam, “Strain gradient plasticity effect in indentation hardness of polymers,” J. Mater. Res., vol. 14, no. 10, pp. 4103–4110, 1999. DOI: 10.1557/JMR.1999.0554.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • A. W. McFarland, and J. S. Colton, “Role of material microstructure in plate stiffness with relevance to microcantilever sensors,” J. Micromech. Microeng., vol. 15, no. 5, pp. 1060–1067, 2005. DOI: 10.1088/0960-1317/15/5/024.
  • M. H. Ghayesh, and A. Farajpour, “A review on the mechanics of functionally graded nanoscale and microscale structures,” Int. J. Eng. Sci., vol. 137, pp. 8–36, 2019. DOI: 10.1016/j.ijengsci.2018.12.001.
  • M. Aydogdu, “Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics,” Int. J. Eng. Sci., vol. 56, pp. 17–28, 2012. DOI: 10.1016/j.ijengsci.2012.02.004.
  • H. Farokhi, and M. H. Ghayesh, “Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams,” Int. J. Eng. Sci., vol. 91, pp. 12–33, 2015. DOI: 10.1016/j.ijengsci.2015.02.005.
  • H. Farokhi, and M. H. Ghayesh, “Dynamical behaviour of electrically actuated microcantilevers,” Coupled Syst. Mech., vol. 4, no. 3, pp. 251–262, 2015. DOI: 10.12989/csm.2015.4.3.251.
  • M. R. Farajpour, A. Rastgoo, A. Farajpour, and M. Mohammadi, “Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory,” Micro Nano Lett., vol. 11, pp. 302–307, 2016. DOI: 10.1049/mnl.2016.0081.
  • M. Farajpour, A. Shahidi, and A. Farajpour, “A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires,” Mater. Res. Exp., vol. 5, no. 3, pp. 035026, 2018. DOI: 10.1088/2053-1591/aab3a9.
  • H. Farokhi, and M. H. Ghayesh, “Viscoelastic shear deformable microplates: Nonlinear forced resonant characteristics,” Mech. Syst. Signal Proc., vol. 118, pp. 742–756, 2019. DOI: 10.1016/j.ymssp.2018.08.058.
  • H. Farokhi, and M. H. Ghayesh, “Supercritical nonlinear parametric dynamics of Timoshenko microbeams,” Commun. Nonlinear Sci. Num. Simul., vol. 59, pp. 592–605, 2018. DOI: 10.1016/j.cnsns.2017.11.033.
  • A. K. Soh, Y. Sun, and D. Fang, “Vibration analysis of microscale beam induced by laser pulse,” J. Sound Vibr., vol. 311, no. 1-2, pp. 243–253, 2008. DOI: 10.1016/j.jsv.2007.09.002.
  • L. Medina, R. Gilat, and S. Krylov, “Symmetry breaking in an initially curved micro beam loaded by a distributed electrostatic force,” Int. J. Solids Struct, vol. 49, no. 13, pp. 1864–1876, 2012. DOI: 10.1016/j.ijsolstr.2012.03.040.
  • A. Sur, and M. Kanoria, “Thermoelastic gold Nano-beam under ramp-type laser pulse with three-phase-lag effect,” Int. J. Appl. Math. Mech, vol. 10, no. 5, pp. 86–104, 2014.
  • S. Mondal, A. Sur, and M. Kanoria, “Modeling and analysis of vibration of a gold nano-beam under two-temperature theory,” Eng. Solid Mech., vol. 5, no. 1, pp. 15–30, 2017. DOI: 10.5267/j.esm.2016.10.003.
  • H. Farokhi, and M. H. Ghayesh, “Nonlinear thermo-mechanical behaviour of MEMS resonators,” Microsyst. Technol., vol. 23, no. 12, pp. 5303–5315, 2017. DOI: 10.1007/s00542-017-3381-1.
  • M. B. Agranat et al., “Inertialess metal glow produced by picosecond pulses,” Soviet Phys.-JETP, vol. 52, pp. 27–31, 1980.
  • J. A. Valdmanis, and R. L. Fork, “Design consideration for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable grain,” IEEE J. Quantum Electron, vol. 22, no. 1, pp. 112, 1986. DOI: 10.1109/JQE.1986.1072854.
  • A. Sur, and M. Kanoria, “Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction,” Procedia Eng., vol. 127, pp. 605–612, 2015. DOI: 10.1016/j.proeng.2015.11.351.
  • A. Sur, and M. Kanoria, “Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources,” Procedia Eng., vol. 173, pp. 875–882, 2017. DOI: 10.1016/j.proeng.2016.12.131.
  • A. Sur, and M. Kanoria, “Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model,” Euro. J. Comput. Mech., vol. 23, no. 5-6, pp. 179–198, 2014. DOI: 10.1080/17797179.2014.978143.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • S. Chakravorty, S. Ghosh, and A. Sur, “Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction,” Procedia Eng., vol. 173, pp. 851–858, 2017. DOI: 10.1016/j.proeng.2016.12.125.
  • A. Sur, and M. Kanoria, “Fractional order generalized thermoelastic functionally graded solid with variable material properties,” J. Solid Mech., vol. 6, pp. 54–69, 2014.
  • A. Sur, and M. Kanoria, “Three dimensional thermoelastic problem under two-temperature theory,” Int. J. Comput. Methods, vol. 14, no. 2, p. 1750030, 2016., DOI: 10.1142/S021987621750030X,1750030-(1-17).
  • M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophys. J. R. Astron. Soc., vol. 3, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • M. Caputo, and F. Mainardi, “Linear model of dissipation in anelastic solids,” Riv. Nuovo Cimento, vol. 1, no. 2, pp. 161–198, 1971. DOI: 10.1007/BF02820620.
  • Y. Povstenko, Fractional Thermoelasticity. New York: Springer, 2015.
  • A. Sur, and M. Kanoria, “Fractional order two-temperature thermoelasticity with finite wave speed,” Acta Mech., vol. 223, no. 12, pp. 2685–2701, 2012. DOI: 10.1007/s00707-012-0736-7.
  • A. Sur, P. Pal, and M. Kanoria, “Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect,” J. Therm. Stress, vol. 41, no. 8, pp. 973–992, 2018. DOI: 10.1080/01495739.2018.1447316.
  • A. Sur, P. Pal, S. Mondal, and M. Kanoria, “Finite element analysis in a fibre-reinforced cylinder due to memory-dependent heat transfer,” Acta Mech., vol. 230, no. 5, pp. 1607–1624, 2019. DOI: 10.1007/s00707-018-2357-2,.
  • S. Mondal, A. Sur, and M. Kanoria, “Transient response in a piezoelastic due to the influence of magnetic field with memory dependent derivative,” Acta Mech, 2019. https://doi.org/10.1007/s00707-019-02380-4.
  • N. Sarkar, and S. Mondal, “Transient responses in a two-temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory-dependent derivative,” Zamm J, 2019., DOI: 10.1002/zamm.201800343.
  • S. Mondal, P. Pal, and M. Kanoria, “Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative,” Acta Mech, vol. 99, p. e201800343, 2018., DOI: 10.1007/s00707-018-2307-z.
  • S. Mondal, N. Sarkar, and N. Sarkar, “Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity,” J. Therm. Stress, 2019., DOI: 10.1080/01495739.2019.1591249.
  • P. Purkait, A. Sur, and M. Kanoria, “Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer,” Int. J. Adv. Appl. Math. Mech., vol. 5, no. 1, pp. 28–39, 2017.
  • Y. J. Yu, W. Hu, and X. G. Tian, “A novel generalized thermoelasticity model based on memory-dependent derivative,” Int. J. Eng. Sci., vol. 81, pp. 123–134, 2014. DOI: 10.1016/j.ijengsci.2014.04.014.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Electro-thermoelasticity theory with memory-dependent derivative heat transfer,” Int. J. Eng. Sci., vol. 99, pp. 22–38, 2016. DOI: 10.1016/j.ijengsci.2015.10.011.
  • M. A. Ezzat, and A. A. El-Bary, “Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature,” J. Mech. Sci. Technol., vol. 29, no. 10, pp. 4273–4279, 2015. DOI: 10.1007/s12206-015-0924-1.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Generalized thermoelasticity with memory-dependent derivatives involving two temperatures,” Mech. Adv. Mater. Struct., vol. 23, no. 5, pp. 545–553, 2016. DOI: 10.1080/15376494.2015.1007189.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Modeling of memory-dependent derivative in generalized thermoelasticity,” Euro. Phys. J. Plus, vol. 131, Article 372, 2016.
  • P. Purkait, A. Sur, and M. Kanoria, “Elasto-thermodiffusive response in a spherical shell subjected to memory-dependent heat transfer,” Waves Random Complex Media, pp. 1, 2019. Doi:, DOI: 10.1080/17455030.2019.1599464.
  • A. Sur, S. Paul, and M. Kanoria, “Modeling ofmemory-dependent derivative in a functionally graded plate,” Waves Random Complex Media, pp. 1, 2019. Doi:, DOI: 10.1080/17455030.2019.1606962.
  • J. L. Wang, and H. F. Li, “Surpassing the fractional derivative: Concept of the memory-dependent derivative,” Comput. Math. Appl., vol. 62, no. 3, pp. 1562–1567, 2011. DOI: 10.1016/j.camwa.2011.04.028.
  • A. S. El-Karamany, and M. A. Ezzat, “Thermoelastic diffusion with memory-dependent derivative,” J. Therm. Stresses, vol. 39, no. 9, pp. 1035–1050, 2016. DOI: 10.1080/01495739.2016.1192847.
  • A. Sur, and M. Kanoria, “Modeling of memory-dependent derivative in a fibre-reinforced plate,” Thin Walled Struct., vol. 126, pp. 85–93, 2017., DOI: 10.1016/j.tws.2017.05.005.
  • S. Chiriţǎ, C. D’Apice, and V. Zampoli, “The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence,” Int. J. Heat Mass Transf., vol. 102, pp. 226–232, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.019.
  • V. Zampoli, and A. Landi, “A domain of influence result about the time differential three-phase-lag thermoelastic model,” J. Therm. Stress, vol. 40, pp. 108–120. 2016. doi: http://dx.doi.org/10.1080/01495739.2016.1195242,
  • J. S. Rao, Advanced Theory of Vibration (Nonlinear Vibration and One Dimensional Structures). New York: Wiley, 1992.
  • I. N. Sneddon, The Use of Integral Transforms. New York: McGraw Hill, 1972.
  • L. Debnath, and D. Bhatta, Integral Transforms and Their Applications. London: Chapman and Hall/CRC, Taylor and Francis Group, 2007.
  • A. Sur, and M. Kanoria, “Propagation of thermal waves in a functionally graded thick plate,” Math. Mech. Solids, vol. 22, no. 4, pp. 718–736, 2017. DOI: 10.1177/1081286515609652.
  • R. Quintanilla, and R. Racke, “A note on stability in three-phase-lag heat conduction,” J. Heat Mass Trans, vol. 51, no. 1-2, pp. 24–29, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.