154
Views
7
CrossRef citations to date
0
Altmetric
Articles

Uniqueness, continuous dependence, and spatial behavior of the solution in linear porous thermoelasticity with two relaxation times

ORCID Icon & ORCID Icon
Pages 1582-1602 | Received 20 May 2019, Accepted 05 Aug 2019, Published online: 30 Aug 2019

References

  • C. Cattaneo, Sulla Conduzione Del Calore. Atti Sem. Mat. Fis. Univ. Modena 3, pp. 83–101 (1948).
  • J. Ignaczak, and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds. Oxford University Press, 2010.
  • J. Shiomi, and S. Maruyama, “Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations,” Phys. Rev. B, vol. 73, 205420, 2006. DOI: 10.1103/PhysRevB.73.205420.
  • Y. Dong, Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems. Berlin, Germany: Springer, 2016.
  • D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd ed. Chichester, UK: John Wiley and Sons, 2014.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Thermal Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • S. Chiriţă, C. D’Apice, and V. Zampoli, “The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence,” Int. J. Heat Mass Transf., vol. 102, pp. 226–232, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.019.
  • C. D’Apice, S. Chiriţă, and V. Zampoli, “On the well-posedness of the time differential three-phase-lag thermoelasticity model,” Arch. Mech., vol. 68, no. 5, pp. 371–393, 2016.
  • V. Zampoli, and A. Landi, “A domain of influence result about the time differential three-phase-lag thermoelastic model,” J. Thermal Stresses, vol. 40, no. 1, pp. 108–120, 2017. DOI: 10.1080/01495739.2016.1195242.
  • N. Bazarra, M. Campo, J. R. Fernández, and R. Quintanilla, “Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction,” Appl. Numer. Math., vol. 140, pp. 76–90, 2019. DOI: 10.1016/j.apnum.2019.01.010.
  • S. Chiriţă, “On the time differential dual-phase-lag thermoelastic model,” Meccanica, vol. 52, no. 1-2, pp. 349–361, 2017. DOI: 10.1007/s11012-016-0414-2.
  • S. Chiriţă, M. Ciarletta, and V. Tibullo, “On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction,” Int. J. Heat Mass Transf., vol. 114, pp. 277–285, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.071.
  • S. Chiriţă, “High-order effects of thermal lagging in deformable conductors,” Int. J. Heat Mass Transf., vol. 127, no. Part C, pp. 965–974, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.08.074.
  • V. Zampoli, and S. Chiriţă, “On the depth of a thermomechanical signal in a dual-phase lag deformable medium,” in Proceedings of the IEEE EESMS Workshop on Environmental, Energy and Structural Monitoring Systems, Article number 8405816, pp. 1–6 (2018). DOI: 10.1109/EESMS.2018.8405816.
  • S. Chiriţă, “On high-order approximations for describing the lagging behavior of heat conduction,” Mathematics Mechanics Solids, vol. 24, no. 6, pp. 1648–1667, 2019. DOI: 10.1177/1081286518758356.
  • S. Chiriţă, and V. Zampoli, “Spatial behavior of the dual-phase-lag deformable conductors,” J. Thermal Stresses, vol. 41, no. 10–12, pp. 1276–1296, 2018. DOI: 10.1080/01495739.2018.1479205.
  • V. Zampoli, “Uniqueness theorems about high-order time differential thermoelastic models,” Ric. di Matematica, vol. 67, no. 2, pp. 929–950, 2018. DOI: 10.1007/s11587-018-0351-6.
  • V. Zampoli, “Some continuous dependence results about high-order time differential thermoelastic models,” J. Thermal Stresses, vol. 41, no. 7, pp. 827–846, 2018. DOI: 10.1080/01495739.2018.1439789.
  • A. Magaña, and R. Quintanilla, “On the existence and uniqueness in phase-lag thermoelasticity,” Meccanica, vol. 53, no. 1-2, pp. 125–134, 2018. DOI: 10.1007/s11012-017-0727-9.
  • Z. Liu, and R. Quintanilla, “Time decay in dual-phase-lag thermoelasticity: Critical case,” Commun. Pure Appl. Anal., vol. 17, no. 1, pp. 177–190, 2018. DOI: 10.3934/cpaa.2018011.
  • A. Magaña, A. Miranville, and R. Quintanilla, “On the stability in phase-lag heat conduction with two temperatures,” J. Evol. Equ., vol. 18, no. 4, pp. 1697–1712, 2018. DOI: 10.1007/s00028-018-0457-z.
  • S. Chiriţă, C. D’Apice, and V. Zampoli, “Spatial behavior of the steady state vibrations in a dual-phase-lag rigid conductor,” J. Adv. Thermal Sci. Res., vol. 6, pp. 1–9, 2019. DOI: 10.15377/2409-5826.2019.06.1.
  • V. Zampoli, “On the increase in signal depth due to high-order effects in micro- and nanosized deformable conductors,” Math. Probl. Eng., vol. 2019, pp. 11, 2019. DOI: 10.1155/2019/2629012.
  • N. Bazarra, M. I. M. Copetti, J. R. Fernández, and R. Quintanilla, “Numerical analysis of some dual-phase-lag models,” Comput. Math. Appl., vol. 77, no. 2, pp. 407–426, 2019. DOI: 10.1016/j.camwa.2018.09.044.
  • N. Bazarra, I. Bochicchio, J. R. Fernández, and M. G. Naso, “Analysis of a contact problem involving an elastic body with dual-phase-lag,” Appl. Math. Optim., 2019. DOI: 10.1007/s00245-019-09574-1.
  • S. C. Cowin, and J. W. Nunziato, “Linear elastic materials with voids,” J. Elast., vol. 13, no. 2, pp. 125–147, 1983. DOI: 10.1007/BF00041230.
  • D. Ieşan, “A theory of thermoelastic materials with voids,” Acta Mechanica, vol. 60, no. 1-2, pp. 67–89, 1986. DOI: 10.1007/BF01302942.
  • D. Ieşan, “Some theorems in the theory of elastic materials with voids,” J. Elast., vol. 15, no. 2, pp. 215–224, 1985. DOI: 10.1007/BF00041994.
  • D. Ieşan, Thermoelastic Models of Continua, Solid Mechanics and Its Applications, vol. 118. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2004.
  • Z. Chen, X. Wang, F. Giuliani, and A. Atkinson, “Microstructural characteristics and elastic modulus of porous solids,” Acta Materialia, vol. 89, pp. 268–277, 2015. DOI: 10.1016/j.actamat.2015.02.014.
  • D. Haberer et al., “Tunable band gap in hydrogenated quasi-free-standing graphene,” Nano Lett., vol. 10, no. 9, pp. 3360–3366, 2010. DOI: 10.1021/nl101066m.
  • G. Garberoglio, N. M. Pugno, and S. Taioli, “Gas adsorption and separation in realistic and idealized frameworks of organic pillared graphene: A comparative study,” J. Phys. Chem. C, vol. 119, no. 4, pp. 1980–1987, 2015. DOI: 10.1021/jp511953p.
  • A. Pedrielli, S. Taioli, G. Garberoglio, and N. M. Pugno, “Mechanical and thermal properties of graphene random nanofoams via molecular dynamics simulations,” Carbon, vol. 132, pp. 766–775, 2018. DOI: 10.1016/j.carbon.2018.02.081.
  • M. B. Østergaard, B. Cai, R. R. Petersen, J. König, P. D. Lee, and Y. Yue, “Impact of pore structure on the thermal conductivity of glass foams,” Mater. Lett., vol. 250, pp. 72–74, 2019. DOI: 10.1016/j.matlet.2019.04.106.
  • J. R. Singh, “Effective thermal conductivity of highly porous two-phase systems,” Appl. Thermal Eng., vol. 24, no. 17–18, pp. 2727–2735, 2004. DOI: 10.1016/j.applthermaleng.2004.03.010.
  • T. J. Lu, and C. Chen, “Thermal transport and fire retardance properties of cellular aluminum alloys,” Acta Materialia, vol. 47, no. 5, pp. 1469–1485, 1999. DOI: 10.1016/S1359-6454(99)00037-3.
  • H. Liu, Q. N. Yu, Z. G. Qu, and R. Z. Yang, “Simulation and analytical validation of forced convection inside open-cell metal foams,” Int. J. Thermal Sci., vol. 111, pp. 234–245, 2017. DOI: 10.1016/j.ijthermalsci.2016.09.006.
  • S. Rionero, and S. Chiriţă, “The Lagrange identity method in linear thermoelasticity,” Int. J. Eng. Sci., vol. 25, no. 7, pp. 935–947, 1987. DOI: 10.1016/0020-7225(87)90126-1.
  • S. Chiriţă, “Some applications of the Lagrange identity in thermoelasticity with one relaxation time,” J. Thermal Stresses, vol. 11, no. 3, pp. 207–231, 1988. DOI: 10.1080/01495738808961933.
  • R. W. Ogden, Non-Linear Elastic Deformations. Mineola, NY: Dover Publications, 1997.
  • A. F. Cheviakov, and J. F. Ganghoffer, “Symmetry properties of two-dimensional Ciarlet-Mooney-Rivlin constitutive models in nonlinear elastodynamics,” J. Math. Anal. Appl., vol. 396, no. 2, pp. 625–639, 2012. DOI: 10.1016/j.jmaa.2012.07.006.
  • J. Ignaczak, and J. Bialy, “Domain of influence in thermoelasticity with one relaxation time,” J. Thermal Stresses, vol. 3, no. 3, pp. 391–399, 1980. DOI: 10.1080/01495738008926977.
  • J. Ignaczak, B. Carbonaro, and R. Russo, “Domain of influence theorem in thermoelasticity with one relaxation time,” J. Thermal Stresses, vol. 9, no. 1, pp. 79–91, 1986. DOI: 10.1080/01495738608961889.
  • A. Kumar, and R. Kumar, “A domain of influence theorem for thermoelasticity with three-phase-lag model,” J. Thermal Stresses, vol. 38, no. 7, pp. 744–755, 2015. DOI: 10.1080/01495739.2015.1040311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.