216
Views
32
CrossRef citations to date
0
Altmetric
Articles

Influence of moving heat source on skin tissue in the context of two-temperature memory-dependent heat transport law

ORCID Icon, ORCID Icon &
Pages 55-71 | Received 29 May 2019, Accepted 18 Aug 2019, Published online: 30 Sep 2019

References

  • J. E. Robinson, M. J. Wizenberg, and W. A. McCready, “Combined hyperthermia and radiation suggest and alternative to heavy particle therapy for reduced oxygen enhancement ratios,” Nature, vol. 251, no. 5475, pp. 521–522, 1974. DOI: 10.1038/251521a0.
  • E. W. Gerner, W. G. Connor, M. L. Boone, J. D. Doss, E. G. Mayer, and R. C. Miller, “The potential of localized heating as a adjunct to radiation therapy,” Radiology, vol. 116, no. 2, pp. 433–439, 1975. DOI: 10.1148/116.2.433.
  • J. N. Weinstein, R. L. Magin, R. L. Cysyk, and D. S. Zaharko, “Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate,” Cancer Res., vol. 40, no. 5, pp. 1388–1395, 1980.
  • M. Mallory, E. Gogineni, G. C. Jones, L. Greer, and C. B. Simone, “Therapeutic hyperthermia: the old, the new, and the upcoming,” Crit. Rev. Oncol. Hematol., vol. 97, pp. 56–64, 2016. DOI:10.1016/j.critrevonc.2015.08.003.
  • B. Hildebrandt et al., “The cellular and molecular basis of hyperthermia,Crit. Rev. Oncol. Hematol., vol. 43, no. 1, pp. 33–56, 2002. DOI: 10.1016/S1040-8428(01)00179-2.
  • E. J. Hall and L. Roizin-Towle, “Biological effects of heat,” Cancer Res., vol. 44, pp. 4708–4713, 1984.
  • S. B. Field, “1985 Douglas Lea memorial lecture. Hyperthermia in the treatment of cancer,” Phys. Med. Biol., vol. 32, no. 7, pp. 789–811, 1987. DOI: 10.1088/0031-9155/32/7/001.
  • M. W. Dewhirst and T. V. Samulski, Hyperthermia in the Treatment for Cancer. Kalamazoo, MI: Upjohn, 1988.
  • S. B. Field and J. W. Hand, An Introduction to the Practical Aspects of Clinical Hyperthermia. New York: Taylor & Francis, 1990.
  • J. B. Jorritsma, P. Burgman, H. H. Kampinga, and A. W. Konings, “DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments,” Radiat. Res., vol. 105, no. 3, pp. 307–319, 1986. DOI: 10.2307/3576687.
  • E. Dikomey and H. Jung, “Correlation between polymerase beta activity and thermal radiosensitization in Chinese hamster ovary cells,” Recent Results Cancer Res., vol. 109, pp. 35–41, 1988. DOI: 10.1007/978-3-642-83263-5.
  • G. P. Raaphorst and M. M. Feeley, “Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair,” Int. J. Radiat. Oncol. Biol. Phys., vol. 29, no. 1, pp. 133–139, 1994. DOI: 10.1016/0360-3016(94)90235-6.
  • R. L. Warters and L. R. Barrows, “Heat sensitivity of HeLa S3 cell DNA topoisomerase II,” J. Cell. Physiol., vol. 159, no. 3, pp. 468–474, 1994. DOI: 10.1002/jcp.1041590311.
  • K. Matsuo et al., “Enhanced expression of the DNA topoisomerase II gene in response to heat shock stress in human epidermoid cancer KB cells,” Cancer Res., vol. 53, no. 5, pp. 1085–1090, 1993.
  • E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,” J. Biol. Chem., vol. 273, no. 10, pp. 5858–5868, 1998. DOI: 10.1074/jbc.273.10.5858.
  • T. T. Paull, E. P. Rogakou, V. Yamazaki, C. U. Kirchgessner, M. Gellert, and W. M. Bonner, “A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage,” Curr. Biol., vol. 10, no. 15, pp. 886–889, 2000. DOI: 10.1016/s0960-9822(00)00610-2.
  • A. Takahashi et al., “Evidence for the involvement of double-strand breaks in heat-induced cell killing,” Cancer Res., vol. 64, no. 24, pp. 8839–8845, 2004. DOI: 10.1158/0008-5472.CAN-04-1876.
  • C. R. Hunt et al., “Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status,” Cancer Res., vol. 67, no. 7, pp. 3010–3017, 2007. DOI: 10.1158/0008-5472.CAN-06-4328.
  • A. Laszlo and I. Fleischer, “Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones,” Cancer Res., vol. 69, no. 5, pp. 2042–2049, 2009. DOI: 10.1158/0008-5472.CAN-08-1639.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • M. R. Talaee and A. Kabiri, “Exact analytical solution of bioheat equation subjected to intensive moving heat source,” J. Mech. Med. Biol., vol. 17, no. 05, pp. 1750081, 2017. DOI: 10.1142/S0219519417500816.
  • M. R. Talaee, A. Kabiri, and R. Khodarahmi, “Analytical solution of hyperbolic heat conduction equation in a finite medium under pulsatile heat source,” Iran. J. Sci. Tech., vol. 42, no. 3, pp. 269–277, 2018. DOI: 10.1007/s40997-017-0096-y.
  • M. R. Talaee, M. Alizadeh, and S. Bakhshandeh, “An exact analytical solution of non-Fourier thermal stress in cylindrical shell under periodic boundary condition,” Eng. Solid Mech., vol. 2, no. 4, pp. 293–302, 2014. DOI: 10.5267/j.esm.2014.8.003.
  • P. J. Chen and M. E. Gurtin, “On a theory of heat conduction involving two temperatures,” ZAMP, vol. 19, pp. 614–627, 1968. DOI: 10.1007/BF01594969.
  • P. J. Chen, M. E. Gurtin, and W. O. Williams, “A note on non-simple heat conduction,” ZAMP, vol. 19, pp. 969–970, 1968. DOI: 10.1007/BF01602278.
  • P. J. Chen, M. E. Gurtin, and W. O. Williams, “On the thermodynamics of non-simple elastic materials with two temperatures,” ZAMP, vol. 20, pp. 107–112, 1969. DOI: 10.1007/BF01591120.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stress.., vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • S. Mondal, A. Sur, and M. Kanoria, “Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo Fabrizio heat transport law,” Acta Mech., 2019. DOI: 10.1007/s00707-019-02498-5.
  • A. Sur and M. Kanoria, “Memory response on thermal wave propagation in an elastic solid with voids,” Mech. Based Design Struct. Mach., pp. 1, 2019. DOI: 10.1080/15397734.2019.1652647.
  • A. Sur, S. Santra, and M. Kanoria, “Memory response on thermal wave propagation in an elastic solid with voids due to influence of magnetic field,” Waves Random Complex Media, pp. 1, 2019. DOI: 10.1080/17455030.2019.1654147.
  • A. Sur and M. Kanoria, “Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction,” Procedia Eng., vol. 127, pp. 605–612, 2015. DOI: 10.1016/j.proeng.2015.11.351.
  • A. Sur and M. Kanoria, “Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources,” Procedia Eng., vol. 173, pp. 875–882, 2017. DOI: 10.1016/j.proeng.2016.12.131.
  • A. Sur and M. Kanoria, “Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model,” Euro. J. Comput. Mech., vol. 23, no. 5-6, pp. 179–198, 2014. DOI: 10.1080/17797179.2014.978143.
  • A. Sur and M. Kanoria, “Propagation of thermal waves in a functionally graded thick plate,” Math. Mech. Solids, vol. 22, no. 4, pp. 718–736, 2017. DOI: 10.1177/1081286515609652.
  • M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophys. J. Roy Astron. Soc., vol. 3, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • M. Caputo and F. Mainardi, “Linear model of dissipation in an elastic solids,” Rivis Ta el Nuovo Cimento, vol. 1, no. 2, pp. 161–198, 1971. DOI: 10.1007/BF02820620.
  • A. Sur and M. Kanoria, “Fractional order two-temperature thermoelasticity with finite wave speed,” Acta Mech., vol. 223, no. 12, pp. 2685–2701, 2012. DOI: 10.1007/s00707-012-0736-7.
  • A. Sur, P. Pal, and M. Kanoria, “Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect,” J. Therm. Stress., vol. 41, no. 8, pp. 973–992, 2018. DOI: 10.1080/01495739.2018.1447316.
  • A. Sur, P. Pal, S. Mondal, and M. Kanoria, “Finite element analysis in a fibre-reinforced cylinder due to memory-dependent heat transfer,” Acta Mech., vol. 230, no. 5, pp. 1607–1624. 2019. DOI: 10.1007/s00707-018-2357-2,.
  • S. Mondal, A. Sur, and M. Kanoria, “Transient response in a piezoelastic due to the influence of magnetic field with memory dependent derivative,” Acta Mech., vol. 230, no. 7, pp. 2325, 2019. DOI: 10.1007/s00707-019-02380-4.
  • N. Sarkar and S. Mondal, “Transient responses in a two-temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory-dependent derivative,” Zamm Journal of Applied Mathematics and Mechanics, vol. 99, no. 6, p. e201800343, 2019. DOI: 10.1002/zamm.201800343.
  • S. Mondal, P. Pal, and M. Kanoria, “Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative,” Acta Mech., vol. 230, no. 1, pp. 179–199, 2019.
  • S. Mondal, N. Sarkar, and N. Sarkar, “Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity,” J. Therm. Stress., vol. 42, no. 8, pp. 1035–1050, 2019. DOI: 10.1080/01495739.2019.1591249
  • P. Purkait, A. Sur, and M. Kanoria, “Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer,” Int. J. Adv. Appl. Math. Mech., vol. 5, no. 1, pp. 28–39, 2017.
  • Y. J. Yu, W. Hu, and X. G. Tian, “A novel generalized thermoelasticity model based on memory-dependent derivative,” Int. J. Eng. Sci., vol. 81, pp. 123–134, 2014. DOI: 10.1016/j.ijengsci.2014.04.014.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Electro-thermoelasticity theory with memory-dependent derivative heat transfer,” Int. J. Eng. Sci., vol. 99, pp. 22–38, 2016. DOI: 10.1016/j.ijengsci.2015.10.011.
  • M. A. Ezzat and A. A. El-Bary, “Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature,” J. Mech. Sci. Technol., vol. 29, no. 10, pp. 4273–4279, 2015. DOI: 10.1007/s12206-015-0924-1.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Generalized thermoelasticity with memory-dependent derivatives involving two temperatures,” Mech. Adv. Mater. Struct., vol. 23, no. 5, pp. 545–553, 2016. DOI: 10.1080/15376494.2015.1007189.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Modeling of memory-dependent derivative in generalized thermoelasticity,” Eur. Phys. J. Plus, vol. 131, no. 10, pp. 372, 2016. DOI: 10.1140/epjp/i2016-16372-3.
  • P. Purkait, A. Sur, and M. Kanoria, “Elasto-thermodiffusive response in a spherical shell subjected to memory-dependent heat transfer,” Waves Random Complex Media, pp. 1, 2019. DOI: 10.1080/17455030.2019.1599464.
  • A. Sur, S. Paul, and M. Kanoria, “Modeling of memory-dependent derivative in a functionally graded plate,” Waves Random Complex Media, pp. 1, 2019. DOI: 10.1080/17455030.2019.1606962
  • J. L. Wang and H. F. Li, “Surpassing the fractional derivative: concept of the memory-dependent derivative,” Comput. Math. Appl., vol. 62, no. 3, pp. 1562–1567, 2011. DOI: 10.1016/j.camwa.2011.04.028.
  • S. Mondal and M. Kanoria, “Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity,” Mech. Based Design Struct. Mach., pp. 1, 2019. DOI: 10.1080/15397734.2019.1620529.
  • S. Mondal, “Interactions due to a moving heat source in a thin slim rod under memory-dependent dual-phase lag magneto-thermo-visco-elasticity,” Mech. Time-Dep. Mater., 2019. DOI: 10.1007/s11043-019-09418-z
  • A. Sur and M. Kanoria, “Modeling of memory-dependent derivative in a fibre-reinforced plate,” Thin Walled Struct., vol. 126, pp. 85–93, 2018. DOI: 10.1016/j.tws.2017.05.005.
  • D. J. Halsted and D. E. Brown, “Zakian’s technique for inverting Laplace transforms,” Chem. Eng. J., vol. 3, pp. 312–313, 1972. DOI:10.1016/0300-9467(72)85037-8
  • A. K. Khamis, A. A. El-Bary, H. M. Youssef, and A. M. Nasr, “Two-temperature high-order lagging effect of living tissue subjected to moving heat source,” Microsys. Techn., 2019. DOI: 10.1007/s00542-019-04443-x.
  • S. Mondal, P. Pal, and M. Kanoria, “Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative,” Acta Mech., vol. 230, no. 1, pp. 179–199, 2019. DOI: 10.1007/s00707-018-2307-z.
  • S. Mondal, A. Sur, and M. Kanoria, “A memory response in the vibration of a microscale beam induced by laser pulse,” J. Therm. Stress., pp. 1, 2019. DOI: 10.1080/01495739.2019.1629854.
  • R. Quintanilla and R. Racke, “A note on stability in three-phase-lag heat conduction,” J. Heat. Mass. Transf., vol. 51, no. 1–2, pp. 24–29, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.045.
  • C. Li et al., “Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating,” J. Appl. Phys., vol. 123, no. 17, pp. 174906, 2018. DOI: 10.1063/1.5022622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.