273
Views
27
CrossRef citations to date
0
Altmetric
Articles

Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane

ORCID Icon, &
Pages 109-131 | Received 11 Jun 2019, Accepted 18 Aug 2019, Published online: 27 Sep 2019

References

  • S. A. Emam, “A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams,” Compos. Struct., vol. 90, no. 2, pp. 247–253, 2009. DOI: 10.1016/j.compstruct.2009.03.020.
  • S. A. Emam and A. H. Nayfeh, “Postbuckling and free vibrations of composite beams,” Compos. Struct., vol. 88, no. 4, pp. 636–642, 2009. DOI: 10.1016/j.compstruct.2008.06.006.
  • Y. Kiani and M. R. Eslami, “Thermal buckling analysis of functionally graded material beams,” Int. J. Mech. Mater. Des, vol. 6, no. 3, pp. 229–238, 2010. DOI: 10.1007/s10999-010-9132-4.
  • Y. Kiani, S. Taheri, and M. R. Eslami, “Thermal buckling of piezoelectric functionally graded material beams,” J. Thermal Stresses, vol. 34, no. 8, pp. 835–850, 2011. DOI: 10.1080/01495739.2011.586272.
  • H. S. Shen, “A novel technique for nonlinear analysis of beams on two-parameter elastic foundations,” Int. J. Struct. Stab. Dyn., vol. 11, no. 06, pp. 999–1014, 2011. DOI: 10.1142/S0219455411004440.
  • A. Fallah and M. M. Aghdam, “Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation,” Eur. J. Mech. A/Solids, vol. 30, no. 4, pp. 571–583, 2011. DOI: 10.1016/j.euromechsol.2011.01.005.
  • A. Fallah and M. M. Aghdam, “Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation,” Compos. B, vol. 43, no. 3, pp. 1523–1530, 2012. DOI: 10.1016/j.compositesb.2011.08.041.
  • Y. Fu, J. Wang, and Y. Mao, “Nonlinear Analysis of Buckling, Free Vibration and Dynamic Stability for the Piezoelectric Functionally Graded Beams in Thermal Environment,” Appl. Math. Model., vol. 36, no. 9, pp. 4324–4340, 2012. DOI: 10.1016/j.apm.2011.11.059.
  • L. S. Ma and D. W. Lee, “Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading,” Eur. J. Mech. A/Solids, vol. 31, no. 1, pp. 13–20, 2012. DOI: 10.1016/j.euromechsol.2011.06.016.
  • H. Yaghoobi and M. Torabi, “Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation,” Appl. Math. Model., vol. 37, no. 18–19, pp. 8324–8340, 2013. DOI: 10.1016/j.apm.2013.03.037.
  • S. E. Ghiasian, Y. Kiani, and M. R. Eslami, “Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation,” Compos. Struct., vol. 106, pp. 225–234, 2013. DOI: 10.1016/j.compstruct.2013.06.001.
  • D. G. Zhang, “Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Compos. Struct., vol. 100, pp. 121–126, 2013. DOI: 10.1016/j.compstruct.2012.12.024.
  • D. G. Zhang, “Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Meccanica, vol. 49, no. 2, pp. 283–293, 2014. DOI: 10.1007/s11012-013-9793-9.
  • H. S. Shen and Z. X. Wang, “Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments,” Int. J. Mech. Sci., vol. 81, pp. 195–206, 2014. DOI: 10.1016/j.ijmecsci.2014.02.020.
  • B. Akgöz and Ö. Civalek, “Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium,” Int. J. Engineering sci., vol. 85, pp. 90–104, 2014. DOI: 10.1016/j.ijengsci.2014.08.011.
  • M. Komijani, S. E. Esfahani, J. N. Reddy, Y. P. Liu, and M. R. Eslami, “Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation,” Compos. Struct., vol. 112, pp. 292–307, 2014. DOI: 10.1016/j.compstruct.2014.01.041.
  • D. Chen, J. Yang, and S. Kitipornchai, “Elastic buckling and static bending of shear deformable functionally graded porous beam,” Compos. Struct., vol. 133, pp. 54–61, 2015. DOI: 10.1016/j.compstruct.2015.07.052.
  • D. Chen, J. Yang, and S. Kitipornchai, “Free and forced vibrations of shear deformable functionally graded porous beams,” Int. J. Mech. Sci., vol. 108, pp. 14–22, 2016.Vol. DOI: 10.1016/j.ijmecsci.2016.01.025.
  • D. Chen, S. Kitipornchai, and J. Yang, “Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core,” Thin-Walled Struct., vol. 107, pp. 39–48, 2016. DOI: 10.1016/j.tws.2016.05.025.
  • Y. Sun, S. R. Li, and R. C. Batra, “Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation,” J. Thermal Stresses, vol. 39, no. 1, pp. 11–26, 2016. DOI: 10.1080/01495739.2015.1120627.
  • G. L. She, X. Shu, and Y. R. Ren, “Thermal buckling and post-buckling analysis of piezoelectric FGM beams based on high-order shear deformation theory,” J. Thermal Stresses, vol. 40, no. 6, pp. 783–797, 2017. DOI: 10.1080/01495739.2016.1261009.
  • G. L. She, F. G. Yuan, and Y. R. Ren, “Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory,” Appl. Math. Model., vol. 47, pp. 340–357, 2017. DOI: 10.1016/j.apm.2017.03.014.
  • T. Yang, Y. Tang, Q. Li, and X. D. Yang, “Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams,” Compos. Struct., vol. 204, pp. 313–319, 2018. DOI: 10.1016/j.compstruct.2018.07.045.
  • A. M. Dehrouyeh-Semnani, “On the thermally induced nonlinear response of functionally graded beams,” Int. J. Eng. Sci., vol. 125, pp. 53–74, 2018. DOI: 10.1016/j.ijengsci.2017.12.001.
  • A. Mojahedin, M. Jabbari, and T. Rabczuk, “Thermoelastic analysis of functionally graded porous beam,” J. Thermal Stresses, vol. 41, no. 8, pp. 937–950, 2018. DOI: 10.1080/01495739.2018.1446374.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Thermal buckling and post-buckling analysis of geometrically imperfect FGM clamped tubes on nonlinear elastic foundation,” Appl. Math. Model., vol. 71, pp. 12–30, 2019. DOI: 10.1016/j.apm.2019.02.009.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Buckling and post-buckling analysis of geometrically imperfect FGM pin-ended tubes surrounded by nonlinear elastic medium under compressive and thermal loads,” Int. J. Struct. Stab. Dyn., vol. 19, no. 08, pp. 1950089, 2019. DOI: 10.1142/S0219455419500895.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment,” Thin-Walled Struct., vol. 132, pp. 48–57, 2018. DOI: 10.1016/j.tws.2018.08.008.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads,” Acta Mech., vol. 229, no. 7, pp. 3123–3141, 2018. DOI: 10.1007/s00707-018-2134-2.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Thermomechanical nonlinear in-plane analysis of fix-ended FGM shallow arches on nonlinear elastic foundation using two-step perturbation technique,” Int. J. Mech. Mater. Des., vol. 15, no. 2, pp. 225–244, 2019. DOI: 10.1007/s10999-018-9420-y.
  • H. Babaei and M. R. Eslami, “Nonlinear snap-through instability of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory,” Int. J. Struct. Stab. Dyn., vol. 19, no. 08, pp. 1950088, 2019. CrossRef][https://doi.org/10.1142/S0219455419500883] DOI: 10.1142/S0219455419500883.
  • G. L. She, K. M. Yan, Y. L. Zhang, H. B. Liu, and Y. R. Ren, “Wave propagation of functionally graded porous nano-beams based on non-local strain gradient theory,” Eur. Phys. J. Plus, vol. 133, no. 9, pp. 368–376, 2018. DOI: 10.1140/epjp/i2018-12196-5.
  • Y. Liu, S. Su, H. Huang, and Y. Liang, “Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane,” Compos. B, vol. 168, pp. 236–242, 2019. DOI: 10.1016/j.compositesb.2018.12.063.
  • H. S. Shen, Functionally Graded Materials Nonlinear Analysis of Plates and Shells. Boca Raton, FL, USA: CRC Press, 2009.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load,” J. Thermal Stresses, vol. 41, no. 7, pp. 847–865, 2018. DOI: 10.1080/01495739.2017.1421054.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Thermally induced large deflection analysis of shear deformable FGM shallow curved tubes using perturbation method,” ZAMM-J. Appl. Math. Mech., vol. 99, no. 2, p. e201800148, 2019. DOI: 10.1002/zamm.201800148.
  • H. Babaei, Y. Kiani, and M. R. Eslami, “Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface,” Compos. Struct., vol. 220, pp. 888–898, 2019. DOI: 10.1016/j.compstruct.2019.03.064.
  • R. B. Hetnarski, and M. R. Eslami, Thermal Stresses, Advanced Theory and Applications. 2nd ed. Switzerland: Springer, 2019.
  • M. R. Eslami, Buckling and Postbuckling of Beams, Plates, and Shells. Switzerland: Springer, 2018.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, Theory and Application. Boca Raton, FL, USA: CRC Press, 2003.
  • H. S. Shen, A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Singapore: John Wiley and Sons, 2013.
  • H. Babaei, and M. R. Eslami, “Thermally induced large deflection of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory,” Acta Mech., vol. 230, no. 7, pp. 2363–2384, 2019. DOI: 10.1007/s00707-019-02384-0.
  • S. E. Esfahani, Y. Kiani, and M. R. Eslami, “Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations,” Int. J. Mech. Sci., vol. 69, pp. 10–20, 2013. DOI: 10.1016/j.ijmecsci.2013.01.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.