125
Views
8
CrossRef citations to date
0
Altmetric
Articles

Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory

&
Pages 1535-1550 | Received 26 Apr 2019, Accepted 27 Aug 2019, Published online: 11 Oct 2019

References

  • F. Ebrahimi, and E. Salari, “Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory,” J. Mech. Sci. Technol., vol. 29, no. 9, pp. 3797–3803, 2015. DOI: 10.1007/s12206-015-0826-2.
  • A. C. Eringen, and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • F. Ebrahimi, and M. R. Barati, “Vibration analysis of nonlocal beams made of functionally graded material in thermal environment,” Eur. Phys. J. Plus, vol. 131, no. 8, pp. 279, 2016. DOI: 10.1140/epjp/i2016-16279-y.
  • F. Ebrahimi, and M. R. Barati, “A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment,” Appl. Phys. A, vol. 122, no. 9, pp. 792, 2016. DOI: 10.1007/s00339-016-0322-2.
  • F. Ebrahimi, and M. R. Barati, “A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures,” Int. J. Eng. Sci., vol. 107, pp. 183–196, 2016. DOI: 10.1016/j.ijengsci.2016.08.001.
  • F. Ebrahimi, and M. R. Barati, “Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position,” J. Therm. Stresses, vol. 39, no. 10, pp. 1210–1229, 2016. DOI: 10.1080/01495739.2016.1215726.
  • F. Ebrahimi, and M. R. Barati, “Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment,” J. Vib. Control, vol. 24, no. 3, pp. 549–564, 2018. DOI: 10.1177/1077546316646239.
  • F. Ebrahimi, and M. R. Barati, “Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory,” Smart Mater. Struct., vol. 25, no. 10, pp. 105014, 2016. DOI: 10.1088/0964-1726/25/10/105014.
  • S. C. Pradhan, and T. Murmu, “Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics,” Comput. Mater. Sci., vol. 47, no. 1, pp. 268–274, 2009. DOI: 10.1016/j.commatsci.2009.08.001.
  • S. C. Pradhan, and A. Kumar, “Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method,” Compos. Struct., vol. 93, no. 2, pp. 774–779, 2011. DOI: 10.1016/j.compstruct.2010.08.004.
  • T. Aksencer, and M. Aydogdu, “Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory,” Physica E, vol. 43, no. 4, pp. 954–959, 2011. DOI: 10.1016/j.physe.2010.11.024.
  • M. Mohammadi, A. Farajpour, A. Moradi, and M. Ghayour, “Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment,” Compos. B: Eng., vol. 56, pp. 629–637, 2014. DOI: 10.1016/j.compositesb.2013.08.060.
  • M. Mohammadi, M. Goodarzi, M. Ghayour, and A. Farajpour, “Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory,” Compos. B: Eng., vol. 51, pp. 121–129, 2013. DOI: 10.1016/j.compositesb.2013.02.044.
  • R. Ansari, B. Arash, and H. Rouhi, “Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity,” Compos. Struct., vol. 93, no. 9, pp. 2419–2429, 2011. DOI: 10.1016/j.compstruct.2011.04.006.
  • Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, “Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory,” Comput. Mater. Sci., vol. 61, pp. 200–205, 2012. DOI: 10.1016/j.commatsci.2012.04.003.
  • A. Farajpour, A. R. Shahidi, M. Mohammadi, and M. Mahzoon, “Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics,” Compos. Struct., vol. 94, no. 5, pp. 1605–1615, 2012. DOI: 10.1016/j.compstruct.2011.12.032.
  • R. Ansari, and S. Sahmani, “Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations,” Appl. Math. Modell., vol. 37, no. 12-13, pp. 7338–7351, 2013. DOI: 10.1016/j.apm.2013.03.004.
  • M. Sobhy, “Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium,” Physica E, vol. 56, pp. 400–409, 2014. DOI: 10.1016/j.physe.2013.10.017.
  • S. Narendar, and S. Gopalakrishnan, “Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory,” Acta Mech., vol. 223, no. 2, pp. 395–413, 2012. DOI: 10.1007/s00707-011-0560-5.
  • T. Murmu, M. A. McCarthy, and S. Adhikari, “In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach,” Compos. Struct., vol. 96, pp. 57–63, 2013. DOI: 10.1016/j.compstruct.2012.09.005.
  • A. Bessaim, M. S. A. Houari, F. Bernard, and A. Tounsi, “A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates,” Struct. Eng. Mech., vol. 56, no. 2, pp. 223–240, 2015. DOI: 10.12989/sem.2015.56.2.223.
  • S. H. Hashemi, H. Mehrabani, and A. Ahmadi-Savadkoohi, “Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium,” Compos. Part B: Eng., vol. 78, pp. 377–383, 2015. DOI: 10.1016/j.compositesb.2015.04.008.
  • F. Ebrahimi, and N. Shafiei, “Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory,” Mech. Adv. Mater. Struct., vol. 24, no. 9, pp. 761–772, 2017. DOI: 10.1080/15376494.2016.1196781.
  • R. W. Jiang, Z. B. Shen, and G. J. Tang, “Vibration analysis of a single-layered graphene sheet-based mass sensor using the Galerkin strip distributed transfer function method,” Acta Mech., vol. 227, no. 10, pp. 2899–2910, 2016. DOI: 10.1007/s00707-016-1649-7.
  • A. G. Arani, E. Haghparast, and H. B. Zarei, “Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field,” Phys. B: Condens. Matter, vol. 495, pp. 35–49, 2016. DOI: 10.1016/j.physb.2016.04.039.
  • M. Sobhy, “Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory,” Appl. Math. Modell., vol. 40, no. 1, pp. 85–99, 2016. DOI: 10.1016/j.apm.2015.04.037.
  • A. M. Zenkour, “Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium,” Physica E, vol. 79, pp. 87–97, 2016. DOI: 10.1016/j.physe.2015.12.003.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • C. W. Lim, G. Zhang, and J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • L. Li, and Y. Hu, “Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory,” Comput. Mater. Sci., vol. 112, pp. 282–288, 2016. DOI: 10.1016/j.commatsci.2015.10.044.
  • L. Li, Y. Hu, and X. Li, “Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory,” Int. J. Mech. Sci., vol. 115, pp. 135–144, 2016. DOI: 10.1016/j.ijmecsci.2016.06.011.
  • F. Ebrahimi, and M. R. Barati, “Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory,” Appl. Phys. A, vol. 122, no. 9, pp. 843, 2016. DOI: 10.1007/s00339-016-0368-1.
  • F. Ebrahimi, and M. R. Barati, “Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory,” Proc. Instit. Mech. Eng. C: J. Mech. Eng. Sci., vol. 231, no. 23, pp. 4457–4469, 2017. DOI: 10.1177/0954406216668912.
  • F. Ebrahimi, and M. R. Barati, “Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory,” Compos. Struct., vol. 159, pp. 433–444, 2017. DOI: 10.1016/j.compstruct.2016.09.092.
  • F. Ebrahimi, and M. R. Barati, “A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams,” Compos. Struct., vol. 159, pp. 174–182, 2017. DOI: 10.1016/j.compstruct.2016.09.058.
  • F. Ebrahimi, M. R. Barati, and A. Dabbagh, “A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates,” Int. J. Eng. Sci., vol. 107, pp. 169–182, 2016. DOI: 10.1016/j.ijengsci.2016.07.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.