192
Views
1
CrossRef citations to date
0
Altmetric
Articles

Coupled heat equation in thermoelasticity with temperature dependent moduli

ORCID Icon
Pages 1603-1616 | Received 24 May 2019, Accepted 27 Aug 2019, Published online: 27 Sep 2019

References

  • B. A. Boley, “Survey of recent developments in the fields of heat conduction in solids and thermo-elasticity,” Nucl. Eng. Des., vol. 18, no. 3, pp. 377–399, 1972. doi: 10.1016/0029-5493(72)90109-4. DOI: 10.1016/0029-5493(72)90109-4.
  • D. H. Allen, “Thermomechanical coupling in inelastic solids,” Appl. Mech. Rev., vol. 44, no. 8, pp. 361–373, 1991. DOI: 10.1115/1.3119509.
  • R. F. Barron and B. R. Barron, Design for Thermal Stresses. Hoboken, NJ: Wiley, 2011. DOI: 10.1002/9781118093184.
  • S. Prabhakar, M. P. Païdoussis, and S. Vengallatore, “Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators,” J. Sound Vib., vol. 323, no. 1-2, pp. 385–396, 2009. DOI: 10.1016/j.jsv.2008.12.010.
  • O. Brand, I. Dufour, S. M. Heinrich, and F. Josse, Eds. Resonant MEMS. Advanced Micro and Nanosystems. Weinheim, Germany: Wiley-VCH, 2015.
  • C. Li, S. Gao, S. Niu, and H. Liu, “Study of intrinsic dissipation due to thermoelastic coupling in gyroscope resonators,” Sensors, vol. 16, no. 9, pp. 1445, 2016. DOI: 10.3390/s16091445.
  • K. Kokini, “Thermal shock of a cracked strip: effect of temperature-dependent material properties,” Eng. Fract. Mech., vol. 25, no. 2, pp. 167–176, 1986. DOI: 10.1016/0013-7944(86)90216-X.
  • C. Atkinson and R. V. Craster, “Fracture in fully coupled dynamic thermoelasticity,” J. Mech. Phys. Solids, vol. 40, no. 7, pp. 1415–1432, 1992. DOI: 10.1016/0022-5096(92)90026-X.
  • A. Zamani and M. R. Eslami, “Implementation of the extended finite element method for dynamic thermoelastic fracture initiation,” Int. J. Solids Struct., vol. 47, no. 10, pp. 1392–1404, 2010. doi: 10.1016/j.ijsolstr.2010.01.024. DOI: 10.1016/j.ijsolstr.2010.01.024.
  • Y. Shindo, “Thermal shock of cracked composite materials with temperature dependent properties,” in Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, vol. 241, G. A. Schneider and G. Petzow, Eds, NATO ASI Series (Series E: Applied Sciences). Dordrecht: Springer, 1993; pp 181–192. DOI: 10.1007/978-94-015-8200-1_15.
  • A. V. Ekhlakov, O. M. Khay, C. Zhang, J. Sladek, and V. Sladek, “A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock,” Comput. Mater. Sci., vol. 57, no. Supplement C, pp. 30–37, 2012. DOI: 10.1016/j.commatsci.2011.06.019.
  • X. Zhang, L. Zhang, and Z. Chu, “Thermomechanical coupling of non-Fourier heat conduction with the C-V model: thermal propagation in coating systems,” J. Therm. Stress., vol. 38, no. 10, pp. 1104–1117, 2015. DOI: 10.1080/01495739.2015.1073500.
  • Y. Wang, D. Liu, Q. Wang, and C. Shu, “Thermoelastic response of thin plate with variable material properties under transient thermal shock,” Int. J. Mech. Sci., vol. 104, no. Supplement C, pp. 200–206, 2015. DOI: 10.1016/j.ijmecsci.2015.10.013.
  • Y. Z. Wang, D. Liu, Q. Wang, and J. Z. Zhou, “Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock,” J. Therm. Stress., vol. 39, no. 4, pp. 460–473, 2016. DOI: 10.1080/01495739.2016.1158603.
  • D. Y. Tzou, J. K. Chen, and J. E. Beraun, “Recent development of ultrafast thermoelasticity,” J. Therm. Stress., vol. 28, no. 6-7, pp. 563–594, 2005. DOI: 10.1080/01495730590929359.
  • T.-W. Tsai and Y.-M. Lee, “Analysis of microscale heat transfer and ultrafast thermoelasticity in a multi-layered metal film with nonlinear thermal boundary resistance,” Int. J. Heat Mass Transf., vol. 62, pp. 87–98, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.048.
  • D. Yu Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior. Series in chemical and mechanical engineering, 2nd ed. Chichester, UK: Wiley, 2015. DOI: 10.1002/9781118818275.
  • A. Entezari, M. Filippi, E. Carrera, and M. A. Kouchakzadeh, “3D dynamic coupled thermoelastic solution for constant thickness disks using refined 1D finite element models,” Appl. Math. Model., vol. 60, pp. 273–285, 2018. DOI: 10.1016/j.apm.2018.03.015.
  • A. N. Sinha and S. B. Sinha, “Reflection of thermoelastic waves at a solid half-space with thermal relaxation,” J. Phys. Earth, vol. 22, no. 2, pp. 237–244, 1974. DOI: 10.4294/jpe1952.22.237.
  • J. N. Sharma and V. Pathania, “Generalized thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates,” J. Sound Vib., vol. 281, no. 3-5, pp. 1117–1131, 2005. DOI: 10.1016/j.jsv.2004.02.010.
  • Y. Jiangong, W. Bin, and H. Cunfu, “Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation,” Ultrasonics, vol. 50, no. 3, pp. 416–423, 2010. DOI: 10.1016/j.ultras.2009.09.031.
  • I. Dobovšek, “Structure and intrinsic properties of dispersion relation in hyperbolic thermoelasticity,” J. Therm. Stress., vol. 39, no. 10, pp. 1200–1209, 2016. DOI: 10.1080/01495739.2016.1215725.
  • T. E. Tay, “Finite element analysis of thermoelastic coupling in composites,” Comput. Struct., vol. 43, no. 1, pp. 107–112, 1992. DOI: 10.1016/0045-7949(92)90084-D.
  • D. Palumbo and U. Galietti, “Data correction for thermoelastic stress analysis on titanium components,” Exp. Mech., vol. 56, no. 3, pp. 451–462, Mar. 2016. DOI: 10.1007/s11340-015-0115-0.
  • R. J. Greene, E. A. Patterson, and R. E. Rowlands, “Thermoelastic stress analysis,” in Springer Handbook of Experimental Solid Mechanics, W. N. Sharpe, ed. Boston, MA: Springer, 2008; pp. 743–768.
  • P. Stanley, “Beginnings and early development of thermoelastic stress analysis,” Strain, vol. 44, no. 4, pp. 285–297, 2008. DOI: 10.1111/j.1475-1305.2008.00512.x.
  • M. H. Belgen, “Infrared radiometric stress instrumentation application range study,” NASA Contractor Report, NASA CR-1067, NASA, Washington D.C., 1968.
  • A. K. Wong, R. Jones, and J. G. Sparrow, “Thermoelastic constant or thermoelastic parameter?” J. Phys. Chem. Solids, vol. 48, no. 8, pp. 749–753, 1987. DOI: 10.1016/0022-3697(87)90071-0.
  • G. Pitarresi and E. A. Patterson, “A review of the general theory of thermoelastic stress analysis,” J. Strain Anal. Eng. Des., vol. 38, no. 5, pp. 405–417, 2003. DOI: 10.1243/03093240360713469.
  • R. B. Hetnarski and M. Reza Eslami, Thermal Stresses – Advanced Theory and Applications. Volume 158 of solid mechanics and its applications. Dordrecht, Netherlands: Springer, 2009.
  • M. A. Ezzat, M. I. Othman, and A. S. El-Karamany, “The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity,” J. Therm. Stress., vol. 24, no. 12, pp. 1159–1176, 2001. DOI: 10.1080/014957301753251737.
  • M. I. A. Othman, “Lord–Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional generalized thermoelasticity,” J. Therm. Stress., vol. 25, no. 11, pp. 1027–1045, 2002. DOI: 10.1080/01495730290074621.
  • H. M. Youssef and I. A. Abbas, “Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity,” Comput. Methods Sci. Technol., vol. 13, no. 2, pp. 95–100, 2007. DOI: 10.12921/cmst.2007.13.02.95-100.
  • A. M. Zenkour and I. A. Abbas, “A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties,” Int. J. Mech. Sci., vol. 84, no. Supplement C, pp. 54–60, 2014. DOI: 10.1016/j.ijmecsci.2014.03.016.
  • A. Kumar and S. Mukhopadhyay, “Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem,” Z. Angew. Math. Physik, vol. 68, no. 4, pp. 98, Aug. 2017. DOI: 10.1007/s00033-017-0843-3.
  • O. W. Dillon, “A nonlinear thermoelasticity theory,” J. Mech. Phys. Solids, vol. 10, no. 2, pp. 123–131, 1962. DOI: 10.1016/0022-5096(62)90015-7.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • H. G. Wang, “The expression of free energy for thermoelastic material and its relation to the variable material coefficients,” Appl. Math. Mech., vol. 9, no. 12, pp. 1139–1144, 1988. DOI: 10.1007/BF02014468.
  • E. D. Marquardt, J. P. Le, and R. Radebaugh, “Cryogenic material properties database,” in Cryocoolers 11, R. G. Ross, ed. Boston, MA: Springer, 2002. DOI: 10.1007/0-306-47112-4_84.
  • A. D. Kovalenko, Osnovy Termouprugosti. Kiev: Naukova Dumka, 1970.
  • A. D. Kovalenko, “The current theory of thermoelasticity,” Int. Appl. Mech., vol. 6, no. 4, pp. 355–360, 1970. DOI: 10.1007/BF00889364.
  • D. E. Carlson, “Linear thermoelasticity,” in Linear Theories of Elasticity and Thermoelasticity, C. Truesdell, ed. Berlin: Springer, 1973.
  • D. Boussaa, “On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions,” Int. J. Solids Struct., vol. 51, no. 1, pp. 26–34, 1, 2014. DOI: 10.1016/j.ijsolstr.2013.09.009.
  • D. Boussaa, “Effects of superimposed eigenstrains on the overall thermoelastic moduli of composites,” Mech. Mater., vol. 104, pp. 26–37, 2017. DOI: 10.1016/j.mechmat.2016.10.001.
  • J. Lubliner, Plasticity Theory. New York: Macmillan Publishing Company and London: Collier Macmillan Publishers, 1990.
  • D. S. Chandrasekharaiah, “Thermoelasticity with second sound: a review,” Appl. Mech. Rev., vol. 39, no. 3, pp. 355–376, 03, 1986. DOI: 10.1115/1.3143705.
  • D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • R. Fu, “Thermo-mechanical coupling for ablation,” PhD thesis, University of Kentucky, Lexington, Kentucky, 2018.
  • A. F. Robinson, J. M. Dulieu-Barton, S. Quinn, and R. L. Burguete, “A review of residual stress analysis using thermoelastic techniques,” J. Phys. Conf. Ser., vol. 181, no. 1, pp. 012029, 2009. DOI: 10.1088/1742-6596/181/1/012029.
  • A. F. Robinson, J. M. Dulieu-Barton, S. Quinn, and R. L. Burguete, “Paint coating characterization for thermoelastic stress analysis of metallic materials,” Meas. Sci. Technol., vol. 21, no. 8, pp. 085502, 2010. DOI: 10.1088/0957-0233/21/8/085502.
  • A. Garinei, M. Becchetti, E. Pucci, and G. Rossi, “Constant stress field measurements through thermoelasticity,” J. Therm. Stress., vol. 36, no. 7, pp. 672–683, 2013. DOI: 10.1080/01495739.2013.770700.
  • G. Howell, M. Achintha, J. M. Dulieu-Barton, and A. F. Robinson, “A stress-free model for residual stress assessment using thermoelastic stress analysis,” in International Conference on Experimental Mechanics (icEM2014), vol. 9302, C. Quan, K. Qian, A. Asundi, and F. Siong Chau, Eds. Bellingham, WA: SPIE, 2015.
  • G. Howell, “Identification of plastic strain using thermoelastic stress analysis.” PhD thesis, University of Southampton, Southampton, UK, 2017.
  • A. S. Machin, J. G. Sparrow, and M. G. Stimson, “Mean stress dependence of the thermoelastic constant,” Strain, vol. 23, no. 1, pp. 27–30, 1987. DOI: 10.1111/j.1475-1305.1987.tb01934.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.