100
Views
11
CrossRef citations to date
0
Altmetric
Articles

Nonlinear planar secondary resonance analyses of suspended cables with thermal effects

ORCID Icon, &
Pages 1515-1534 | Received 11 Apr 2019, Accepted 08 Sep 2019, Published online: 17 Oct 2019

References

  • H. M. Irvine, Cable Structures. Cambridge, MA: The MIT Press, 1981.
  • Y. Xia, B. Chen, S. Weng, Y. Q. Ni, and Y. L. Xu, “Temperature effect on the vibration properties of civil structures: A literature review and case studies,” J. Civil. Struct. Health. Monit., vol. 2, no. 1, pp. 29–46, 2012. DOI: 10.1007/s13349-011-0015-7.
  • E. Saracoglu, and S. Bergstrand, “Continuous monitoring of a long-span cable-stayed timber bridge,” J. Civil. Struct. Health. Monit., vol. 5, no. 2, pp. 183–194, 2015. DOI: 10.1007/s13349-014-0088-1.
  • H. Li, and J. P. Ou, “The state of the art in structural health monitoring of cable-stayed bridges,” J. Civil. Struct. Health. Monit., vol. 6, no. 1, pp. 43–67, 2016. DOI: 10.1007/s13349-015-0115-x.
  • J. S. Zhu, and Q. L. Meng, “Effective and fine analysis for temperature effect of bridges in natural environments,” J. Bridge Eng., vol. 22, no. 6, p. 04017017, 2017. DOI: 10.1061/(ASCE)BE.1943-5592.0001039.
  • E. S. Tome, M. Pimentel, and J. Figueiras, “Structural response of a concrete cable-stayed bridge under thermal loads,” Eng. Mech., vol. 176, pp. 652–672, 2018. DOI: 10.1016/j.engstruct.2018.09.029.
  • Y. L. Ding, and A. Q. Li, “Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge,” Int. J. Steel Struct., vol. 11, no. 2, pp. 145–155, 2011. DOI: 10.1007/s13296-011-2004-4.
  • Q. Xia, J. Zhang, Y. Tian, and Y. Zhang, “Experimental study of thermal effects on a long-span suspension bridge,” J. Bridge. Eng., vol. 22, no. 7, p. 04017034, 2017. DOI: 10.1061/(ASCE)BE.1943-5592.0001083.
  • D. Wang, Y. M. Liu, and Y. Liu, “3D temperature gradient effect on a steel-concrete composite deck in a suspension bridge with field monitoring data,” Struct. Control. Health. Monit., vol. 25, no. 7, pp. e2179, 2018. DOI: 10.1002/stc.2179.
  • B. Peeters, J. Maeck, and G. De Roeck, “Vibration-based damage detection in civil engineering: Excitation sources and temperature effect,” Smart. Mater. Struct., vol. 10, no. 3, pp. 518–527, 2001. DOI: 10.1088/0964-1726/10/3/314.
  • G. D. Zhou, and T. H. Yi, “Thermal load in large scale bridge: A state of the art review,” Int. J. Distrib. Sens., vol. 217983, pp. 1–17, 2013. DOI: 10.1155/2013/217983.
  • P. Moser, and B. Moaveni, “Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge,” Mech. Syst. Signal Processing, vol. 25, no. 7, pp. 2336–2357, 2011. DOI: 10.1016/j.ymssp.2011.03.005.
  • Z. W. Wang, and T. J. Li, “Nonlinear dynamic analysis of parametrically excited space cable-beam structures due to thermal loads,” Eng. Mech., vol. 83, pp. 50–61, 2015. DOI: 10.1016/j.engstruct.2014.11.001.
  • N. Ashwear, and A. Eriksson, “Influence of temperature on the vibration properties of tensegrity structures,” Int. J. Mech. Sci., vol. 99, pp. 237–250, 2015. DOI: 10.1016/j.ijmecsci.2015.05.019.
  • A. Sadaoui, K. Lattari, and A. Khennane, “Effects of temperature changes on the behaviour of a cable truss system,” J. Constr. Steel. Res., vol. 129, pp. 111–118, 2017. DOI: 10.1016/j.jcsr.2016.11.013.
  • Y. Zhao, Z. Wang, X. Zhang, and L. Chen, “Effects of temperature variation on vibration of a cable stayed beam,” Int. J. Struct. Stab. Dyn., vol. 17, no. 10, pp. 1750123, 2017. DOI: 10.1142/S0219455417501231.
  • F. Treyssède, “Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures,” J. Sound Vib., vol. 413, pp. 191–204, 2018. DOI: 10.1016/j.jsv.2017.10.022.
  • M. Du, Q. Geng, and Y. M. Li, “Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness,” Compos. Struct., vol. 157, pp. 483–493, 2016. DOI: 10.1016/j.compstruct.2016.01.063.
  • H. S. Shen, and Z. X. Wang, “Nonlinear vibration of hybrid laminated plates resting on elastic foundations in thermal environments,” Appl. Math. Model, vol. 36, no. 12, pp. 6275–6290, 2012. DOI: 10.1016/j.apm.2012.02.001.
  • M. Amabili, and S. Carra, “Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges,” J. Sound Vib., vol. 321, no. 3–5, pp. 936–954, 2009. DOI: 10.1016/j.jsv.2008.10.004.
  • V. Settimi, E. Saetta, and G. Rega, “Local and global nonlinear dynamics of thermomechanically coupled composite plates in passive thermal regime,” Nonlinear Dyn., vol. 93, no. 1, pp. 167–187, 2018. DOI: 10.1007/s11071-017-3648-1.
  • S. Li, S. Chen, and P. Xiong, “Thermoelastic damping in functionally graded material circular plates,” J. Therm. Stresses, vol. 41, no. 10–12, pp. 1396–1413, 2018. DOI: 10.1080/01495739.2018.1505446.
  • H. Farokhi, and M. H. Ghayesh, “Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams,” Int. J. Eng. Sci., vol. 91, pp. 12–33, 2015. DOI: 10.1016/j.ijengsci.2015.02.005.
  • M. H. Ghayesh, and M. Amabili, “Nonlinear stability and bifurcations of an axially moving beam in thermal environment,” J. Vib. Control, vol. 21, no. 15, pp. 2981–2994, 2015. DOI: 10.1177/1077546313508576.
  • H. S. Shen, F. Lin, and Y. Xiang, “Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments,” Nonlinear Dyn., vol. 90, no. 2, pp. 899–914, 2017. DOI: 10.1007/s11071-017-3701-0.
  • A. Warminska, E. Manoach, and J. Warminski, “Nonlinear dynamics of a reduced multimodal Timoshenko beam subjected to thermal and mechanical loadings,” Meccanica, vol. 49, no. 8, pp. 1775–1793, 2014. DOI: 10.1007/s11012-014-9891-3.
  • L. L. Gu, Z. Y. Qin, and F. L. Chu, “Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam,” Mech. Syst. Signal Processing, vol. 60–61, pp. 619–643, 2015. DOI: 10.1016/j.ymssp.2014.11.014.
  • Y. Bouras, and Z. Vrcelj, “Non-linear in-plane buckling of shallow concrete arches subjected to combined mechanical and thermal loading,” Eng. Struct., vol. 152, pp. 413–423, 2017. DOI: 10.1016/j.engstruct.2017.09.029.
  • A. Keibolahi, Y. Kiani, and M. R. Eslami, “Nonlinear rapid heating of shallow arches,” J. Therm. Stresses, vol. 41, no. 10–12, pp. 1244–1258, 2018. DOI: 10.1080/01495739.2018.1494522.
  • B. Zhang, Y. L. Zhang, X. D. Yang, and L. Q. Chen, “Saturation and stability in internal resonance of a rotating blade under thermal gradient,” J. Sound Vib., vol. 440, pp. 34–50, 2019. DOI: 10.1016/j.jsv.2018.10.012.
  • G. Rega, “Nonlinear vibrations of suspended cables, Part I: Modeling and analysis,” Appl. Mech. Rev., vol. 57, no. 6, pp. 443–478, 2004. DOI: 10.1115/1.1777224.
  • G. Rega, “Nonlinear vibrations of suspended cables, Part II: Deterministic phenomena,” Appl. Mech. Rev., vol. 57, no. 6, pp. 479–514, 2004. DOI: 10.1115/1.1777225.
  • Y. Y. Cong, and H. J. Kang, “Planar nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion,” Eur. J. Mech.-A-Solid, vol. 76, pp. 91–107, 2019. DOI: 10.1016/j.euromechsol.2019.03.010.
  • T. D. Guo, H. J. Kang, L. H. Wang, and Y. Y. Zhao, “An inclined cable excited by a non-ideal massive moving deck: An asymptotic formulation,” Nonlinear Dyn., vol. 95, no. 1, pp. 749–767, 2019. DOI: 10.1007/s11071-018-4594-2.
  • A. Mansour, B. O. Mekki, S. Montassar, and G. Rega, “Catenary-induced geometric nonlinearity effects on cable linear vibrations,” J. Sound Vib., vol. 413, pp. 332–353, 2018. DOI: 10.1016/j.jsv.2017.10.012.
  • C. Sun, Y. Zhao, J. Peng, H. Kang, and Y. Zhao, “Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation,” Eng. Struct., vol. 172, pp. 938–955, 2018. DOI: 10.1016/j.engstruct.2018.06.088.
  • F. Treyssède, “Free linear vibrations of cables under thermal stress,” J. Sound Vib., vol. 327, no. 1–2, pp. 1–8, 2009. DOI: 10.1016/j.jsv.2009.07.005.
  • N. Bouaanani, and P. Marcuzzi, “Finite difference thermoelastic analysis of suspended cables including extensibility and large sag effects,” J. Therm. Stresses, vol. 34, no. 1, pp. 18–50, 2011. DOI: 10.1080/01495739.2010.511927.
  • M. Lepidi, and V. Gattulli, “Static and dynamic response of elastic suspended cables with thermal effects,” Int. J. Solids. Struct., vol. 49, no. 9, pp. 1103–1116, 2012. DOI: 10.1016/j.ijsolstr.2012.01.008.
  • G. Vairo, and S. Montassar, “Mechanical modelling of stays under thermal loads,” Mech. Models Methods Civ. Eng. Lect. Notes Appl. Comput. Mech., vol. 61, pp. 481–498, 2012. DOI: 10.1007/978-3-642-24638-8.
  • M. M. Rezaiee-Pajand, M. Mokhtari, and A. R. Masoodi, “A novel cable element for nonlinear thermo-elastic analysis,” Eng. Struct., vol. 167, pp. 431–444, 2018. DOI: 10.1016/j.engstruct.2018.04.022.
  • Z. Chen, Z. Liu, and G. Sun, “Thermal behavior of steel cables in pre-stressed steel structures,” J. Mater. Civil. Eng., vol. 23, no. 9, pp. 1265–1271, 2011. DOI: 10.1061/(ASCE)MT.1943-5533.0000293.
  • Y. Zhao, Y. Zhao, and C. Sun, “Temperature effects on tension forces and frequencies of suspended cables,” presented at the 9th European Conference on Structural Dynamics, Porto, Portugal, Jun. 30–Jul. 02, 2014.
  • S. Montassar, O. B. Mekki, and G. Vairo, “On the effects of uniform temperature variations on stay cables,” J. Civ. Struct. Health. Monit, vol. 5, no. 5, pp. 735–742, 2015. DOI: 10.1007/s13349-015-0140-9.
  • Y. Zhao, J. Peng, Y. Zhao, and L. Chen, “Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables,” Nonlinear Dyn., vol. 89, no. 4, pp. 2815–2827, 2017. DOI: 10.1007/s11071-017-3627-6.
  • Y. Zhao, C. Huang, L. Chen, and J. Peng, “Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects,” J. Sound Vib., vol. 416, pp. 279–294, 2018. DOI: 10.1016/j.jsv.2017.11.035.
  • F. Benedettini, G. Rega, and R. Alaggio, “Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions,” J. Sound Vib., vol. 182, no. 5, pp. 775–798, 1995. DOI: 10.1006/jsvi.1995.0232.
  • A. H. Nayfeh, and W. Lacarbonara, “On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities,” Nonlinear Dyn., vol. 13, no. 3, pp. 203–220, 1997. DOI: 10.1023/A:1008253901255.
  • W. Lacarbonara, “Direct treatment and discretizations of non-linear spatially continuous systems,” J. Sound. Vib., vol. 221, no. 5, pp. 849–866, 1999. DOI: 10.1006/jsvi.1998.2049.
  • Y. Zhao, C. Sun, Z. Wang, and L. Wang, “Analytical solutions for resonant response of suspended cables subjected to external excitation,” Nonlinear Dyn., vol. 78, no. 2, pp. 1017–1032, 2014. DOI: 10.1007/s11071-014-1493-z.
  • F. Benedettini, and G. Rega, “Planar non-linear oscillations of elastic cables under superharmonic resonance conditions,” J. Sound Vib., vol. 132, no. 3, pp. 353–366, 1989. DOI: 10.1016/0022-460X(89)90630-5.
  • G. Rega, and F. Benedettini, “Planar non-linear oscillations of elastic cables under subharmonic resonance conditions,” J. Sound Vib., vol. 132, no. 3, pp. 367–381, 1989. DOI: 10.1016/0022-460X(89)90631-7.
  • A. H. Nayfeh, “Quenching of primary resonance by a superharmonic resonance,” J. Sound Vib., vol. 92, no. 3, pp. 363–377, 1984. DOI: 10.1016/0022-460X(84)90385-7.
  • A. H. Nayfeh, “The response of single degree of freedom systems with quadratic and cubic nonlinearities to a subharmonic excitation,” J. Sound Vib., vol. 89, no. 4, pp. 457–470, 1983. DOI: 10.1016/0022-460X(83)90347-4.
  • J. Ma, F. Liu, M. Nie, and J. Wang, “Nonlinear free vibration of a beam on Winkler foundation with consideration of soil mass motion of finite depth,” Nonlinear Dyn., vol. 92, no. 2, pp. 429–441, 2018. DOI: 10.1007/s11071-018-4066-8.
  • J. Ma, X. Gao, and F. Liu, “Nonlinear lateral vibrations and two-to-one resonant responses of a single pile with soil-structure interaction,” Meccanica, vol. 52, no. 15, pp. 3549–3562, 2017. DOI: 10.1007/s11012-017-0681-6.
  • J. Peng, M. Xiang, L. Li, H. Sun, and X. Wang, “Time-delayed feedback control of piezoelectric elastic beams under superharmonic and subharmonic excitations,” Appl. Sci., vol. 9, no. 8, pp. 1557, 2019. DOI: 10.3390/app9081557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.