175
Views
23
CrossRef citations to date
0
Altmetric
Articles

Dynamic analysis to the fractional order thermoelastic diffusion problem of an infinite body with a spherical cavity and variable material properties

, , &
Pages 38-54 | Received 24 May 2019, Accepted 30 Sep 2019, Published online: 17 Oct 2019

References

  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • J. C. Maxwell, “On the dynamic theory of gases,” Phil. Trans. Roy. Soc., vol. 157, pp. 49–88, 1867.
  • V. Peshkov, “Second sound in helium II,” J. Phys., vol. 8, pp. 381–386, 1944.
  • C. Cattaneo, “A form of heat conduction equation which eliminates the paradox ofinstantaneous propagation,” Cr. Phys., vol. 247, pp. 431–433, 1958.
  • P. M. Vernotte, and C. R. Hebd, “Paradoxes in the continuous theory of the heatconduction,” C. R. Acad. Sci. Paris., vol. 246, pp. 3154–3155, 1958.
  • H. W. Lord, and Y. A. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green, and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green, and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • W. Nowacki, “Dynamical problems of thermodiffusion in elastic solid,” Proc. Vib. Probl., vol. 15, no. 2, pp. 105–128, 1974.
  • H. H. Sherief, F. A. Hamza, and H. A. Saleh, “The theory of generalized thermoelastic diffusion,” Int. J. Eng. Sci., vol. 42, no. 5–6, pp. 591–608, 2004. DOI: 10.1016/j.ijengsci.2003.05.001.
  • H. H. Sherief, and H. A. Saleh, “A half-space problem in the theory of generalized thermoelasticdiffusion,” Int. J. Solids Struct., vol. 42, no. 15, pp. 4484–4493, 2005. DOI: 10.1016/j.ijsolstr.2005.01.001.
  • M. A. Aouadi, “Problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion,” Int. J. Solids Struct., vol. 44, no. 17, pp. 5711–5722, 2007. DOI: 10.1016/j.ijsolstr.2007.01.019.
  • T. He, C. Li, S. Shi, and Y. Ma, “A two-dimensional generalized thermoelastic diffusionproblem for a half-space,” Eur. J. Mech., vol. 52, pp. 37–43, 2015. DOI: 10.1016/j.euromechsol.2015.01.002.
  • C. L. Li, H. l Guo, and X. G. Tian, “Soret effect on the shock responses of generalized diffusion-thermoelasticity,” J. Therm. Stress, vol. 40, no. 12, pp. 1563–1574, 2017. DOI: 10.1080/01495739.2017.1359066.
  • R. C. Koeller, “Applications of fractional calculus to the theory of viscoelasticity,” J. Appl. Mech., vol. 51, no. 2, pp. 299–307, 1984. DOI: 10.1115/1.3167616.
  • Y. A. Rossikhin, and M. V. Shitikova, “Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids,” Appl. Mech. Rev., vol. 50, no. 1, pp. 15–67, 1997. DOI: 10.1115/1.3101682.
  • H. H. Sherief, A. M. A. El-Sayed, and A. M. A. El-Latief, “Fractional order theory ofthermoelasticity,” Int. J. Solids Struct., vol. 47, no. 2, pp. 269–275, 2010. DOI: 10.1016/j.ijsolstr.2009.09.034.
  • H. M. Youssef, “Theory of fractional order generalized thermoelasticity,” J. HeatTransfer, vol. 132, no. 6, pp. 061301, 2010. DOI: 10.1115/1.4000705.
  • M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Physica B, vol. 406, no. 1, pp. 30–35, 2011. DOI: 10.1016/j.physb.2010.10.005.
  • A. Abbas, and H. M. Youssef, “Two-dimensional fractional order generalizedthermoelastic porous material,” Lat. Am. Int.J. Solids Struct., vol. 12, no. 7, pp. 1415–1431, 2015. DOI: 10.1590/1679-78251584.
  • Y. B. Ma, and T. H. He, “Dynamic response of a generalized piezoelectric–thermoelasticproblemunder fractional order theory of thermoelasticity,” Mech. Adv. Mater. Struct., vol. 23, no. 10, pp. 1173–1180, 2016. DOI: 10.1080/15376494.2015.1068397.
  • I. A. Abbas, “Eigenvalue approach to fractional order thermoelasticity for an infinite body with a spherical cavity,” JAAUBAS, vol. 20, pp. 84–88, 2016. DOI: 10.1016/j.jaubas.2014.11.001.
  • X. Y. Li, Z. N. Xue, and X. G. Tian, “A modified fractional order generalizedbio-thermoelastic theory with temperature-dependent thermal material properties,” Int. J. Therm. Sci., vol. 132, pp. 249–256, 2018. DOI: 10.1016/j.ijthermalsci.2018.06.007.
  • M. A. Ezzat, and M. A. Fayik, “Fractional order theory of thermoelastic diffusion,” J. Therm. Stress, vol. 34, no. 8, pp. 851–872, 2011. DOI: 10.1080/01495739.2011.586274.
  • S. Shaw, and B. Mukhopadhyay, “Theory of fractional-ordered thermoelasticdiffusion,” Eur. Phys. J. Plus, vol. 131, no. 6, pp. 183, 2016. DOI: 10.1140/epjp/i2016-16183-6.
  • C. B. Xiong, and Y. B. Niu, “Fractional-order generalized thermoelastic diffusion theory,” Appl. Math. Mech.-Engl. Ed., vol. 38, no. 8, pp. 1091–1108, 2017. DOI: 10.1007/s10483-017-2230-9.
  • C. L. Li, H. L. Guo, and X. G. Tian, “A size-dependent generalized thermoelasticdiffusiontheory and its application,” J. Thermal. Stress, vol. 40, no. 5, pp. 603–626, 2017. DOI: 10.1080/01495739.2017.1300786.
  • I. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity,” Appl. Math. Model., vol. 39, no. 20, pp. 6196–6206, 2015. DOI: 10.1016/j.apm.2015.01.065.
  • N. Noda, “Thermal stresses in materials with temperature-dependent properties,” Appl. Mech. Rev., vol. 44, no. 9, pp. 383, 1991. DOI: 10.1115/1.3119511.
  • I. A. Abbas, “Eigenvalue approach in a three-dimensional generalized thermoelasticinteractions with temperature-dependent material properties,” Comput. Math. Appl., vol. 68, no. 12, pp. 2036–2056, 2014. DOI: 10.1016/j.camwa.2014.09.016.
  • Y. B. Ma, L. C. Cao, and T. H. He, “Variable properties thermopiezoelectric problemunderfractional thermoelasticity,” Smart Struct. Syst., vol. 21, no. 2, pp. 163–170, 2018.
  • Y. B. Ma, and W. Peng, “Dynamic response of an infinite medium with a spherical cavity on temperature-dependent properties subjected to a thermal shock underfractional-ordertheory of thermoelasticity,” J. Therm. Stress, vol. 41, no. 3, pp. 302–312, 2018. DOI: 10.1080/01495739.2017.1401439.
  • C. B. Xiong, and Y. Guo, “Electromagneto-thermoelastic diffusive plane waves in ahalf-space withvariable material properties under fractional order thermoelasticdiffusion,” Int. J. Appl. Electrom., vol. 53, no. 2, pp. 251–269, 2017.
  • C. Li, H. Guo, X. Tian, and X. Tian, “Transient response for a half-space with variablethermalconductivity and diffusivity under thermal and chemical shock,” J. Thermal. Stress, vol. 40, no. 3, pp. 389–401, 2017. DOI: 10.1080/01495739.2016.1218745.
  • V. V. Rishin, B. A. Lyashenko, K. G. Akinin, and G. N. Nadezhdin, “Temperaturedependence of adhesion strength and elasticity of some heat-resistant coatings,” Strength Mater., vol. 5, no. 1, pp. 123–126, 1973. DOI: 10.1007/BF00762888.
  • L. Brancik, “Programs for fast numerical inversion of Laplace transforms in Matlab Language Environment,” Proc. Seventh Prague Conf. Matlab, vol. 99, pp. 27–39, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.