119
Views
12
CrossRef citations to date
0
Altmetric
Articles

Fundamental solution of steady oscillations equations in nonlocal thermoelastic medium with voids

ORCID Icon
Pages 284-304 | Received 21 Jul 2019, Accepted 16 Nov 2019, Published online: 07 Jan 2020

References

  • A. C. Eringen, “Theory of nonlocal thermoelasticity,” Int. J. Eng. Sci., vol. 12, no. 12, pp. 1063–1077, 1974. DOI: 10.1016/0020-7225(74)90033-0.
  • A. C. Eringen, “Memory dependent nonlocal elastic solids,” Lett. Appl. Eng. Sci., vol. 2, no. 3, pp. 145–149, 1974.
  • A. C. Eringen, “Edge dislocation on nonlocal elasticity,” Int. J. Eng. Sci., vol. 15, no. 3, pp. 177–183, 1977. DOI: 10.1016/0020-7225(77)90003-9.
  • A. C. Eringen, “A mixture theory of electromagnetism and superconductivity,” Int. J. Eng. Sci., vol. 36, no. 5–6, pp. 525–543, 1998. DOI: 10.1016/S0020-7225(97)00091-8.
  • A. C. Eringen, Nonlocal Continuum Theories. New York: Springer, 2002.
  • B. S. Altan, “Uniqueness in the linear theory of nonlocal elasticity,” Bull. Tech. Univ. Istanb., vol. 37, pp. 373–385, 1984.
  • A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. C. Eringen, “Nonlocal polar elastic continua,” Int. J. Eng. Sci., vol. 10, no. 1, pp. 1–16, 1972. DOI: 10.1016/0020-7225(72)90070-5.
  • A. C. Eringen, “On Rayleigh surface waves with small wave lengths,” Lett. Appl. Eng. Sci., vol. 1, pp. 11–17, 1973.
  • A. C. Eringen, “Plane waves in nonlocal micropolar elasticity,” Int. J. Eng. Sci, vol. 22, no. 8-10, pp. 1113–1121, 1984. DOI: 10.1016/0020-7225(84)90112-5.
  • D. P. Acharya and A. Mondal, “Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids,” Sadhana, vol. 27, no. 6, pp. 605–612, 2002. DOI: 10.1007/BF02703353.
  • I. Roy, D. P. Acharya, and S. Acharya, “Rayleigh wave in a rotating nonlocal magneto-elastic half-plane,” J. Theor. Appl. Mech., vol. 45, no. 4, pp. 61–78, 2015. DOI: 10.1515/jtam-2015-0024.
  • A. Khurana and S. K. Tomar, “Wave propagation in nonlocal microstretch solid,” Appl. Math. Model., vol. 40, pp. 5885–6875, 2016.
  • Y. Yu Jun, X.-G. Tian, and X.-R. Liu, “Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity,” Eur. J. Mech. A/Sol., vol. 60, pp. 238–253, 2016. DOI: 10.1016/j.euromechsol.2016.08.004.
  • A. Khurana and S. K. Tomar, “Rayleigh-type waves in nonlocal micropolar solid half space,” Ultrasonics, vol. 73, pp. 162–168, 2017. DOI: 10.1016/j.ultras.2016.09.005.
  • D. Sing, G. Kaur, and S. K. Tomar, “Waves in nonlocal elastic solid with voids,” J. Elast., vol. 128, pp. 85–114, 2017. DOI: 10.1007/s10659-016-9618-x.
  • M. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • H. Lord and Y. Shulman, “A generalized dynamic theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elast., vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green and P. M. Naghdi, “A re-examination of the basic properties of thermomechanics,” Proc. R. Soc. Lond. Ser. A, vol. 432, no. 1885, pp. 171–194, 1991. DOI: 10.1098/rspa.1991.0012.
  • A. E. Green and P. M. Naghdi, “On damped heat waves in an elastic solid,” J. Therm. Stress., vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elast., vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • D. S. Chandrasekharaih, “Thermoelasticity with second sound: a review,” Appl. Mech. Rev., vol. 39, no. 3, pp. 355–376, 1986. DOI: 10.1115/1.3143705.
  • D. S. Chandrasekharaih, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • D. Y. Tzou, “A unique field approach for heat conduction from macro to micro scales,” ASME J. Heat Transf., vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • B. Singh, “Wave propagation in a generalized thermoelastic material with voids,” Appl. Math. Comput., vol. 189, pp. 698–709, 2007. DOI: 10.1016/j.amc.2006.11.123.
  • J. W. Nunziato and S. C. Cowin, “A nonlinear theory of elastic materials with voids,” Arch. Ration. Mech. Anal., vol. 72, no. 2, pp. 175–201, 1979. DOI: 10.1007/BF00249363.
  • S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elast., vol. 13, no. 2, pp. 125–147, 1983. DOI: 10.1007/BF00041230.
  • P. Puri and S. C. Cowin, “Plane waves in linear elastic materials with voids,” J. Elast., vol. 15, no. 2, pp. 167–183, 1985. DOI: 10.1007/BF00041991.
  • D. Iesan, “A theory of thermoelastic materials with voids,” Acta Mech., vol. 60, pp. 67–89, 1986. DOI: 10.1007/BF01302942.
  • D. Iesan, “Nonlinear plane strain of elastic materials with voids,” Math. Mech. Solids, vol. 11, no. 4, pp. 361–384, 2006. DOI: 10.1177/1081286505044134.
  • M. Ciarletta and A. Scalia, “On the nonlinear theory of nonsimple thermoelastic materials with voids,” Z. Angew. Math. Mech., vol. 73, pp. 7–75, 1993.
  • R. B. Hetnarski, “The fundamental solution of the coupled thermoelastic problem for small times,” Arch. Mech. Stosow, vol. 16, pp. 23–31, 1964.
  • R. B. Hetnarski, “Solution of the coupled problem of thermoelasticity in form of a series of functions,” Arch. Mech. Stosow, vol. 16, pp. 919–941, 1964.
  • E. Scarpetta, “On the fundamental solution in micropolar elasticity with voids,” Acta Mech., vol. 82, no. 3–4, pp. 151–158, 1990. DOI: 10.1007/BF01173624.
  • M. Svanadze, “The fundamental matrix of the linearized equations of the theory of elastic mixtures,” Proc. I. Vekue Inst. Appl. Math. Tbilisi State Univ., vol. 23, pp. 133–148, 1988.
  • M. Svanadze, “Fundamental solution oscillation equations thermoelasticity theory mixtures two solids,” J. Therm. Stress., vol. 19, pp. 633–648, 1996. DOI: 10.1080/01495739608946199.
  • M. Svanadze, “Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures,” J. Therm. Stress., vol. 27, no. 2, pp. 151–170, 2004. DOI: 10.1080/01495730490264277.
  • M. Svanadze, V. Tibullo, and V. Zampoli, “Fundmental solution in the theory of micropolar thermoelasticity without energy dissipation,” J. Therm. Stress., vol. 29, no. 1, pp. 57–66, 2006. DOI: 10.1080/01495730500257417.
  • M. Ciarletta, A. Scalia, and M. Svanadze, “Fundamental solutions in the theory of micropolar thermoelasticity for materials with voids,” J. Therm. Stress., vol. 30, no. 3, pp. 213–229, 2007. DOI: 10.1080/01495730601130901.
  • S. Biswas and N. Sarkar, “Fundamental solution of the steady oscillations equations in porous thermoelastic medium with dual-phase-lag model,” Mech. Mater., vol. 126, pp. 140–147, 2018. DOI: 10.1016/j.mechmat.2018.08.008.
  • S. Biswas, “Fundamental solution of steady oscillations in thermoelastic medium with voids,” Waves Random Complex Media, 2018. DOI: 10.1080/17455030.2018.1557759.
  • L. Hörmander, Linear Partial Differential Operators. Berlin: Springer-Verlag, 1963.
  • L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Berlin: Springer-Verlag, 1983.
  • M. Bachher and N. Sarkar, “Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer,” Waves Random Complex Media, vol. 29, no. 4, pp. 595–613, 2019. DOI: 10.1080/17455030.2018.1457230.
  • N. Sarkar and S. K. Tomar, “Plane waves in nonlocal thermoelastic solid with voids,” J. Therm. Stress., vol. 42, no. 5, pp. 580–606, 2019. DOI: 10.1080/01495739.2018.1554395.
  • K. Sharma, and P. Kumar, “Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,” j. Thermal Stresses, vol. 36, no. 2, pp. 94–111, 2013. DOI: 10.1080/01495739.2012.720545.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.