127
Views
20
CrossRef citations to date
0
Altmetric
Articles

Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory

ORCID Icon
Pages 687-706 | Received 10 Jun 2019, Accepted 23 Feb 2020, Published online: 31 Mar 2020

References

  • T.-C. Chen and C.-I. Weng, “Coupled transient thermoelastic response in an axi-symmetric circular cylinder by Laplace transform-finite element method,” Comput. Struct., vol. 33, pp. 533–542, 1989. DOI: 10.1016/0045-7949(89)90027-8.
  • Z.-Y. Lee, “Generalized coupled transient response of 3-D multilayered hollow cylinder,” Int. Commun. Heat Mass Transfer, vol. 33, no. 8, pp. 1002–1012, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.05.007.
  • H. H. Sherief and M. N. Anwar, “A problem in generalized thermoelasticity for an infinitely long annular cylinder,” Int. J. Eng. Sci., vol. 26, no. 3, pp. 301–306, 1988. DOI: 10.1016/0020-7225(88)90079-1.
  • H. H. Sherief, “Problem in electromagneto thermoelasticity for an infinitely long solid conducting circular cylinder with thermal relaxation,” Int. J. Eng. Sci., vol. 32, no. 7, pp. 1137–1149, 1994. DOI: 10.1016/0020-7225(94)90077-9.
  • A. Bagri and M. R. Eslami, “Generalized coupled thermoelasticity of disks based on the Lord–Shulman model,” J. Therm. Stresses, vol. 27, no. 8, pp. 691–704, 2004. DOI: 10.1080/01495730490440127.
  • A. Bagri and M. R. Eslami, “Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory,” Compos. Struct., vol. 83, no. 2, pp. 168–179, 2008. DOI: 10.1016/j.compstruct.2007.04.024.
  • T. He, X. Tian and Y. Shen, “A generalized electromagneto-thermoelastic problem for an infinitely long solid cylinder,” Europ. J. Mech. A/Solids, vol. 24, no. 2, pp. 349–359, 2005. DOI: 10.1016/j.euromechsol.2004.12.001.
  • H. M. Youssef and I. A. Abbas, “Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity,” Comput. Methods Sci. Technol., vol. 13, no. 2, pp. 95–100, 2007. DOI: 10.12921/cmst.2007.13.02.95-100.
  • T. Darabseh, M. Naji and M. Al-Nimr, “Transient thermal stresses in an orthotropic cylinder under the hyperbolic heat conduction model,” Heat Transfer Eng., vol. 29, no. 7, pp. 632–642, 2008. DOI: 10.1080/01457630801922501.
  • S. Mukhopadhyay and R. Kumar, “Solution of a problem of generalized thermoelasticity of an annular cylinder with variable material properties by finite difference method,” Comput. Methode Sci. Technol., vol. 15, no. 2, pp. 169–176, 2009. DOI: 10.12921/cmst.2009.15.02.169-176.
  • R. Chitikireddy, S. K. Datta, A. H. Shah and H. Bai, “Transient thermoelastic waves in an anisotropic hollow cylinder due to localized heating,” Int. J. Solids Struct., vol. 48, no. 21, pp. 3063–3074, 2011. DOI: 10.1016/j.ijsolstr.2011.06.023.
  • H. H. Sherief and N. M. El-Maghraby, “Effect of body forces on a 2D generalized thermoelastic long cylinder,” Comput. Math. Appl., vol. 66, no. 7, pp. 1181–1191, 2013. DOI: 10.1016/j.camwa.2013.07.011.
  • A. M. Zenkour and I. A. Abbas, “A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties,” Int. J. Mech. Sci., vol. 84, pp. 54–60, 2014. DOI: 10.1016/j.ijmecsci.2014.03.016.
  • A. A. Allam, M. A. Omar and K. T. Ramadan, “A thermoelastic diffusion interaction in an infinitely long annular cylinder,” Arch. Appl. Mech, vol. 84, no. 7, pp. 953–965, 2014. DOI: 10.1007/s00419-014-0841-2.
  • I. A. Abbas and Y. Abd Elmaboud, “Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time,” Math. Mech. Solids, vol. 22, no. 2, pp. 210–223, 2017. DOI: 10.1177/1081286515579308.
  • H. H. Sherief and F. A. Hamza, “Modeling of variable thermal conductivity in a generalized thermoelastic infinitely long hollow cylinder,” Meccanica, vol. 51, no. 3, pp. 551–558, 2016. DOI: 10.1007/s11012-015-0219-8.
  • Y. Z. Wang, D. Liu, Q. Wang and J. Z. Zhou, “Thermoelastic interaction in functionally graded thick hollow cylinder with temperature-dependent properties,” J. Therm. Stresses, vol. 41, no. 4, pp. 399–417, 2018. DOI: 10.1080/01495739.2017.1422823.
  • P. Ponnusamy and R. Selvamani, “Dispersion analysis of generalized magneto-thermoelastic waves in a transversely isotropic cylindrical panel,” J. Therm. Stresses, vol. 35, no. 12, pp. 1119–1142, 2012. DOI: 10.1080/01495739.2012.720496.
  • H. Taheri, S. Fariborz and M. R. Eslami, “Thermoelastic analysis of an annulus using the Green–Naghdi model,” J. Therm. Stresses, vol. 28, no. 9, pp. 911–927, 2005. DOI: 10.1080/01495730590964909.
  • S. M. Hosseini, “Coupled thermoelasticity and second sound in finite length functionally graded thick hollow cylinders (without energy dissipation),” Mater. Design, vol. 30, no. 6, pp. 2011–2023, 2009. DOI: 10.1016/j.matdes.2008.08.048.
  • M. I. A. Othman and I. A. Abbas, “Thermal shock problem in a homogeneous isotropic hollow cylinder with energy dissipation,” Comput. Math. Model., vol. 22, no. 3, pp. 266–277, 2011. DOI: 10.1007/s10598-011-9102-1.
  • T. Darabseh, N. Yilmaz and M. Bataineh, “Transient thermoelasticity analysis of functionally graded thick hollow cylinder based on Green–Lindsay model,” Int. J. Mech. Mater. Des., vol. 8, no. 3, pp. 247–255, 2012. DOI: 10.1007/s10999-012-9189-3.
  • S. M. Hosseini and M. H. Abolbashari, “Analytical solution for thermoelastic waves propagation analysis in thick hollow cylinder based on Green–Naghdi model of coupled thermoelasticity,” J. Therm. Stresses, vol. 35, no. 4, pp. 363–376, 2012. DOI: 10.1080/01495739.2012.663686.
  • M. Islam, A. Kar and M. Kanoria, “Two-temperature generalized thermoelasticity in a fiber-reinforced hollow cylinder under thermal shock,” Int. J. Comput. Meth. Eng. Sci. Mech., vol. 14, no. 5, pp. 367–390, 2013. DOI: 10.1080/15502287.2012.756956.
  • A. M. Zenkour and I. A. Abbas, “Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation,” J. Magnet. Magnet. Mater., vol. 395, pp. 123–129, 2015. DOI: 10.1016/j.jmmm.2015.07.038.
  • C. L. Li, Q. Han and Y. J. Liu, “Thermoelastic wave characteristics in a hollow cylinder using the modified wave finite element method,” Acta Mech., vol. 227, no. 6, pp. 1711–1725, 2016. DOI: 10.1007/s00707-016-1578-5.
  • A. H. Akbarzadeh and Z. Chen, “Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory,” Int. J. Thermophys., vol. 33, no. 6, pp. 1100–1125, 2012. DOI: 10.1007/s10765-012-1204-2.
  • A. D. Hobiny, I. A. Abbas and F. Berto, “Finite element analysis of thermoelastic fiber-reinforced anisotropic hollow cylinder with dual-phase-lag model,” Strength Mater., vol. 50, no. 3, pp. 396–405, 2018. DOI: 10.1007/s11223-018-9983-8.
  • A. Bahtui and M. R. Eslami, “Generalized coupled thermoelasticity of functionally graded cylindrical shells,” Int. J. Numer. Meth. Eng., vol. 69, no. 4, pp. 676–697, 2007. DOI: 10.1002/nme.1782.
  • A. Bagri and M. R. Eslami, “A unified generalized thermoelasticity; solution for cylinders and spheres,” Int. J. Mech. Sci., vol. 49, no. 12, pp. 1325–1335, 2007. DOI: 10.1016/j.ijmecsci.2007.04.004.
  • M. Shariyat, “Nonlinear transient stress and wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermoelasticity theory,” Int. J. Mech. Sci., vol. 65, no. 1, pp. 24–37, 2012. DOI: 10.1016/j.ijmecsci.2012.09.001.
  • Y. Wang, D. Liu, Q. Wang and J. Zhou, “Problem of axisymmetric plane strain of generalized thermoelastic materials with variable thermal properties,” Europ. J. Mech. - A/Solids, vol. 60, pp. 28–38, 2016. DOI: 10.1016/j.euromechsol.2016.06.001.
  • A. M. Zenkour, “A generalized thermoelastic dual-phase-lagging response of thick beams subjected to harmonically varying heat and pressure,” J. Theor. Appl. Mech., vol. 56, pp. 15–30, 2018.
  • A. M. Zenkour, “Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis,” Acta Mech., vol. 229, no. 9, pp. 3671–3692, 2018. DOI: 10.1007/s00707-018-2172-9.
  • A. M. Zenkour, “Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermoelastic medium,” Res. Phys., vol. 11, pp. 929–937, 2018. DOI: 10.1016/j.rinp.2018.10.030.
  • A. M. Zenkour, “Effect of thermal activation and diffusion on a photothermal semiconducting half-space,” J. Phys. Chemist. Solids, vol. 132, pp. 56–67, 2019. DOI: 10.1016/j.jpcs.2019.04.011.
  • M. A. Biot, “Theory of stress–strain relations in an isotropic viscoelasticity, and relaxation phenomena,” J. Appl. Phys., vol. 18, pp. 27–34, 1965.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermo-elasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • D. Y. Tzou, “A unified field approach for heat conduction from macro to micro scales,” ASME J. Heat Transf., vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.